
تعداد نشریات | 41 |
تعداد شمارهها | 1,162 |
تعداد مقالات | 10,024 |
تعداد مشاهده مقاله | 18,743,663 |
تعداد دریافت فایل اصل مقاله | 13,012,909 |
Resource Allocation Optimization for Multi-Target Detection and Tracking in Cognitive Radar Networks | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 اسفند 1403 اصل مقاله (623.5 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.72829.1272 | ||
نویسندگان | ||
Maryam Najimi* 1؛ Akbar Hashemi Borzabadi2 | ||
1Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran | ||
2Department of Applied Mathematics, University of Science and Technology of Mazandaran, Behshahr, Iran.. | ||
چکیده | ||
This paper addresses the challenges of power control, radar assignment, and signal timing to improve the detection and tracking of multiple targets within a mono-static cognitive radar network. A fusion center is utilized to integrate target velocity data gathered by radars. The primary objective is to minimize the mean square error in target velocity estimation while adhering to constraints related to global detection probability and total radar power consumption for effective target detection and tracking. The optimization problem is formulated and a low-complexity method is proposed using the genetic algorithm (GA). In this approach, the radars and their transmission powers are represented as chromosomes and the network's quality of service (QoS) requirements serve as inputs to the GA. The output of the GA is the mean error square of the target velocity estimation. Once the problem is resolved, the power allocation for each radar assigned to a specific target is determined. Simulation results demonstrate the effectiveness of the proposed algorithm in enhancing detection performance and improving tracking accuracy when compared to other benchmark algorithms. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Target detection؛ Target tracking؛ Power allocation؛ Genetic algorithm | ||
مراجع | ||
[1] Akhondi Darzikolaei, M., Mollaei, M., & Najimi, M. (2021). “An effective PSO-based power allocation for target tracking in MIMO radar with widely separated antennas”, Physical Communication, 51, doi: 10.1016/j.phycom.2021.101544.
[2] Boyd, S., & Vandenberghe, L. (2004). “Convex optimization”, Cambridge: Cambridge University Press.
[3] Chavali, Ph., & Nehorai, A. (2012). “Scheduling and power allocation in a cognitive radar network for multiple-target tracking”, IEEE Transactions on Signal Processing. 60. 715-729, doi: 10.1109/TSP.2011.2174989.
[4] Garcia, N., Haimovich, A.M., Coulon, M. & Lops, M., (2013). “Resource allocation in MIMO radar with multiple targets for non-coherent localization”, IEEE Transactions on Signal Processing, 62(10), 2656-2666, doi: 10.1109/TSP.2014.2315169.
[5] Geng, Zh., Wang, B., Yan, H., Zhang, J., & Zhu, D. (2022). “Moving target detection and tracking with multiplatform radar network (MRN)”, IET Radar, Sonar & Navigation, 16(5), 815-824, doi: 10.1049/rsn2.12222
[6] Godrich, H., Petropulu, A.P., & Poor, H.V. (2011). “Power allocation strategies for target localization in distributed multiple-radar architectures”, IEEE Transactions on Signal Processing, 59(7), 3226-3240, doi: 10.1109/TSP.2011.214497.
[7] Goldberg, D.E. (1989). “Genetic algorithm in search optimization and learning machine”, Addison Wesley.
[8] He, Q., Blum, R.S., Godrich, H., & Haimovich, A.M. (2010). “Target velocity estimation and antenna placement for MIMO radar with widely separated antennas”, IEEE Journal of Selected Topics in Signal Processing, 4(1), 79-100, doi: 10.1109/JSTSP.2009.2038974.
[9] Hosseini Andargoli, S.M., & Malekzadeh, J. (2019). “LPI radar network optimization based on geometrical measurement fusion”, Optimization and Engineering Journal, 20(1), 119-150, doi: 10.1007/s11081-018-9401-x.
[10] Jin, B., Kuang, X., Liu, Sh., Zhang, Zh., & Lian, Zh. (2023). “Joint allocation of transmit power and signal bandwidth for distributed cognitive tracking radar network using cooperative game”, Digital Signal Processing, 135, doi: 10.1016/j.dsp.2023.103964.
[11] Jin, B., kuang, X., Peng, Y., Zhang, Zh., Wang, B., Li, S., & Lian, Zh. (2022). “Distributed power allocation for cognitive tracking based on non- cooperative game in decentralized netted radar”, Digital Signal Processing, 126, doi: 10.1016/j.dsp.2022.103499.
[12] Kurdzo, J.M., & Palmer, R.D. (2011). “On the use of genetic algorithms for optimization of a multi-band, multi-mission radar network”, IEEE Radar Conference, 231-236, doi: 10.1109/RADAR.2011.5960534.
[13] Li, F., Gao, X., & Li, B. (2014). “A study on search strategies of netted surveillance radar”, In: International Conference on Logistics Engineering, Management and Computer Science, LEMCS 2014, Atlantis Press, doi: 10.2991/lemcs-14.2014.54.
[14] Niu, R.X., Blum, R.S., Varshney, P.K., & Drozd, A.L. (2012). “Target localization and tracking in noncoherent multiple-input multiple-output radar systems”, IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1466-1489, doi: 10.1109/TAES.2012.6178073.
[15] Richards, M.A., & Holm, W.A. (2010). “Principles of modern radar: Basic principles”, Science and Technology Publishing.
[16] Shi, C., Wang, F., Sellathurai, M., & Zhou, J. (2014). “LPI optimization framework for target tracking in radar network architectures using information-theoretic criteria”, International Journal of Antennas and Propagation, 21, 1-10, doi: 10.1155/2014/654561.
[17] Skolnik, M.I. (1962). “Introduction to radar, in: Radar Handbook”, 2nd Edition, McGraw-Hill Publishing Company, New York, 1990.
[18] Song, X., Zheng, N., Yan, Sh., & Li, H. (2018). “A joint resource allocation method for multiple targets tracking in distributed MIMO radar systems”, EURASIP Journal on Advances in Signal Processing, 65, 1-12, doi: 10.1186/s13634-018-0587-z.
[19] Tichavsky, P., Muravchik, C.H., & Nehorai, A. (1998). “Posterior Cramer-Rao bounds for discrete time nonlinear filtering”, IEEE Transactions on Signal Processing, 46, 1386-1396, doi: 10.1109/78.668800.
[20] Xie, M., Yi, W., Kirubarajan, Th., & Kong, L. (2018). “Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks”, IEEE Transactions on Signal Processing, 66(3), 729-743, doi: 10.1109/tsp.2017.2777394.
[21] Yan, J., Liu, H., & Bao, Zh. (2018). “Power allocation scheme for target tracking in clutter with multiple radar system”, Elsevier Signal Processing Journal, 144, 453-458, doi: 10.1016/j.sigpro.2017.11.006.
[22] Yan, J.K., Liu, H.W., Jiu, B., Chen, B., Liu, Z., & Bao, Z. (2015). “Simultaneous multi beam resource allocation scheme for multiple target tracking”, IEEE Transactions on Signal Processing, 63(12), 3110-3122, doi: 10.1109/TSP.2015.2417504.
[23] Zhu, P., Liang, J., Luo, Z., & Shen, X. (2023). “Cognitive radar target tracking using intelligent waveforms based on reinforcement learning”, IEEE Transactions on Geoscience and Remote Sensing, 61, doi: 10.1109/TGRS.2023.3298355. | ||
آمار تعداد مشاهده مقاله: 54 تعداد دریافت فایل اصل مقاله: 66 |