
تعداد نشریات | 41 |
تعداد شمارهها | 1,153 |
تعداد مقالات | 9,923 |
تعداد مشاهده مقاله | 18,481,985 |
تعداد دریافت فایل اصل مقاله | 12,836,549 |
Hybrid of Convolutional Neural Network and Support Vector Machine for Cancer Type Prediction | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 13 اسفند 1403 اصل مقاله (511.98 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.72710.1269 | ||
نویسنده | ||
Soghra Mikaeyl Nejad* | ||
Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran. | ||
چکیده | ||
Gene expression signatures reflect the response of cell tissues to diseases, genetic disorders, and drug treatments, containing hidden patterns that can provide valuable insights for biological research and cancer diagnostics. This studyproposes a hybrid deep learning approach combining convolutional neural networks (CNNs) and support vector machines (SVMs) to classify cancer types using unstructured gene expression data. We applied three hybrid CNN-SVM models to a dataset of 10,340 samples spanning 33 cancer types from the Cancer Genome Atlas. The CNN component extracted latent features from the gene expression data, while the SVM replaced the softmax layer to enhance classification robustness. Among the proposed models, the Hybrid-CNN-SVM model achieved superior performance, demonstrating excellent prediction accuracy and outperforming other models. This study highlights the potential of hybrid deep learning frameworks for cancer type prediction and underscores their applicability to high-dimensional genomic datasets. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Deep learning؛ Convolutional neural networks؛ Support vector machine؛ Gene expression؛ The cancer genome atlas؛ Cancer type prediction | ||
مراجع | ||
[1] Ajmal, H.B., and Madden, M.G.(2022).“ Dynamic Bayesian network learning to infer sparse models from time series Gene expression data'”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(5), 2794-2805, doi: 10.1109/TCBB.2021.3092879.
[2] Arowolo, M.O., Adebiyi, M., Adebiyi, A., and Okesola, O. (2020). “PCA model for RNA-seq malaria vector data classification using KNN and decision tree algorithm”, International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), 1-8, doi: 10.1109/ICMCECS47690.2020.240881.
[3] Barman, S., and Kwon, Y.-K. (2018). “A Boolean network inference from time-series gene expression data using a genetic algorithm”, Bioinformatics, 34(17), i927-i933, doi: 10.1093/bioinformatics/bty584.
[4] Ciriello, G., Gatza, M.L., Beck, A.H., Wilkerson, M.D., Rhie, S.K., Pastore, A., Zhang, H., McLellan, M., Yau, C., Kandoth, C., Bowlby, R., Shen, H., Hayat, S., Fieldhouse, R., Lester, S.C., Tse, G.M., Factor, R.E., Collins, L.C., Allison, K.H., Chen, Y.Y., Jensen, K., Johnson, N.B., Oesterreich, S., Mills, G.B., Cherniack, A.D., Robertson, G., Benz, C., Sander, C., Laird, P.W., Hoadley, K.A., and King, T.A. (2015). TCGA Research Network; “Comprehensive molecular portraits of invasive lobular breast cancer”, Perou CM. Cell. 163(2):506-519. PMID: 26451490; PM-CID: PMC4603750, doi: 10.1016/j.cell.2015.09.033.
[5] Colaprico, A., Silva, T.C., Olsen, C., Garofano, L., Cava, C., Garolini, D., Sabedot, T.S., Malta, T.M., Pagnotta, S.M., Castiglioni, I., Ceccarelli, M., Bontempi, G., and Noushmehr, H. (2016). “TC-GAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data”. Nucleic Acids Research, 44(8): e71. PMID: 26704973; PMCID: PMC4856967, doi: 10.1093/nar/gkv1507.
[6] Huang, Z., Johnson, T.S., Han, Z., Helm, B., Cao, S., Zhang, C., Salama, P., Rizkalla, M., Yu, C.Y., Cheng, J., Xiang, S., Zhan, X., Zhang, J., and Huang, K. (2020). “Deep learning-based cancer survival prognosis from RNA-seq data: Approaches and evaluations”, BMC Medical Genomics, 13(S5), doi: 10.1186/s12920-020-0686-1.
[7] Jiang, X., Zhao, J., Qian, W., Song, W., and Lin, G.N. (2020). “A generative adversarial network model for disease gene prediction with RNA-Seq data”, IEEE Access, 8, 37352-37360, doi:10.1109/ACCESS.2020.2975585.
[8] Kim, T., Chen, I.R., Lin, Y., Wang, A.Y.-Y., Yang, J. Y., and Yang, P. (2018). “Impact of similarity metrics on single-cell RNA-seq data clustering”, Briefings in Bioinformatics, 20(6), 2316-2326, doi: 10.1093/bib/bby076.
[9] Li, Y., Kang, K., Krahn, J.M., Croutwater, N., Lee, K., Umbach, D.M., and Li, L. (2017). “A comprehensive genomic pan-cancer classification using the cancer genome atlas gene expression data”, BMC Genomics, 18(1), doi: 10.1186/s12864-017-3906-0.
[10] Locati, L.D., Serafini, M.S., Iannò, M.F., Carenzo, A., Orlandi, E., Resteghin, C., Cavalieri, S., Bossi, P., Canevari, S., Licitra, L., and De Cecco, L. (2019). “Mining of self-organizing map gene-expression portraits reveals prognostic stratification of HPV-positive head and neck squamous cell carcinoma”, Cancers, 11(8), 1057, doi: 10.3390/cancers11081057.
[11] Lyu, B., and Haque, A.(2018).“ Deep learning based tumor type classification using gene expression data”, Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 89-96, doi: 10.1155/2022/4715998.
[12] Ma, R., Yang, G., Xu, R., Liu, X., Zhang, Y., Ma, Y., and Wang, Q. (2019). “Pattern analysis of conditional essentiality (pace)-based heuristic identification of an in vivo colonization determinant as a novel target for the construction of a live attenuated vaccine against Edwardsiella piscicida”, Fish and Shellfish Immunology, 90, 65-72, doi: 10.1016/j.fsi.2019.03.079.
[13] Melana, S.M., Nepomnaschy, I., Hasa, J., Djougarian, A., Djougarian, A., Holland, J.F., and Pogo, B.G. (2010). “Detection of human mammary tumor virus proteins in human breast cancer cells”, Journal of Virological Methods, 163(1), 157-161, doi: 10.1016/j.jviromet.2009.09.015.
[14] Monti, M., Fiorentino, J., Milanetti, E., Gosti, G., and Tartaglia, G.G. (2022). “Prediction of time series gene expression and structural analysis of gene regulatory networks using recurrent neural networks”, Entropy (Basel, Switzerland), 24(2), 141, doi: 10.3390/e24020141.
[15] Mostavi, M., Chiu, Y.-C., Huang, Y., and Chen, Y. (2020). “Convolutional neural network models for cancer type prediction based on gene expression”, BMC Medical Genomics, 13(S5), doi: 10.1186/s12920-020-0677-2.
[16] Moussa, M., and Măndoiu, I.I. (2018). “Single cell RNA-seq data clustering using TF-IDF based methods”, BMC Genomics, 19(S6), doi: 10.1186/s12864-018-4922-4.
[17] Nandini, D., Capecci, E., Koefoed, L., Laña, I., Shahi, G.K., and Kasabov, N. (2018). “Modelling and analysis of temporal gene expression data using spiking neural networks”, Lecture Notes in Computer Science, 571-581, doi:10.1007/978-3-030-04167-0_52.
[18] Peng, J., Wang, X., and Shang, X. (2019). “Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq Data”, BMC Bioinformatics, 20(S8), doi: 10.1186/s12859-019-2769-6.
[19] Ramirez, R., Chiu, Y.-C., Hererra, A., Mostavi, M., Ramirez, J., Chen, Y., Huang, Y., and Jin, Y.-F. (2020). “Classification of cancer types using graph convolutional neural networks”, Frontiers in Physics, 8, doi: 10.3389/fphy.2020.00203.
[20] Stickels, R.R., Murray, E., Kumar, P., Li, J., Marshall, J.L., DiBella, D., Arlotta, P., Macosko, E.Z., and Chen, F. (2020). “Sensitive spatial genome wide expression profiling at cellular resolution”, bioRxiv, 989806, doi:10.1101/2020.03.12.989806.
[21] Tran, K.A., and Kondrashova, O., Bradley, A., Williams, E.D., Pearson, J.V., and Waddell, N. (2021). “Deep learning in cancer diagnosis, prognosis and treatment selection”, Genome Medicine, 13(1), doi:10.1186/s13073-021-00968-x.
[22] Xiao, Y., Wu, J., Lin, Z., and Zhao, X. (2018). “A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-Seq data”, Computer Methods and Programs in Biomedicine, 166, 99-105, doi:10.1016/j.cmpb.2018.10.004.
[23] Xie, Y., Meng, W.-Y., Li, R.-Z., Wang, Y.-W., Qian, X., Chan, C., Yu, Z.-F., Fan, X.-X., Pan, H.-D., Xie, C., Wu, Q.-B., Yan, P.-Y., Liu, L., Tang, Y.-J., Yao, X.-J., Wang, M.-F., and Leung, E.L.-H. (2021). “Early lung cancer diagnostic biomarker discovery by machine learning methods”, Translational Oncology, 14(1), 100907, doi:10.1016/j.tranon.2020.100907. | ||
آمار تعداد مشاهده مقاله: 34 تعداد دریافت فایل اصل مقاله: 13 |