
تعداد نشریات | 41 |
تعداد شمارهها | 1,162 |
تعداد مقالات | 10,024 |
تعداد مشاهده مقاله | 18,743,858 |
تعداد دریافت فایل اصل مقاله | 13,013,071 |
Multi-Objective Optimization Problem Involving Max-Product Fuzzy Relation Inequalities with Application in Wireless Communication | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 24 فروردین 1404 اصل مقاله (419.29 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.72543.1270 | ||
نویسندگان | ||
Narjes Amiri* 1؛ Hadi Nasseri1؛ Davood Darvishi2 | ||
1Department of Applied Mathematics, University of Mazandaran, Babolsar, Iran. | ||
2Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran. | ||
چکیده | ||
This paper explores a specific category of optimization management models tailored for wireless communication systems. To enhance the efficiency of managing these systems, we introduce a fuzzy relation multi-objective programming approach. We define the concept of a feasible index set and present a novel algorithm, termed the feasible index set algorithm, which is designed to determine the optimal lexicographic solution to the problem, demonstrating polynomial computational complexity. Previous studies have indicated that the emission base stations within wireless communication systems can be effectively modeled using a series of fuzzy relation inequalities through max-product composition. This topic is also addressed in our paper. Wireless communication is widely employed across various sectors, encompassing mobile communication and data transmission. In this framework, information is transmitted via electromagnetic waves generated by fixed emission base stations. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Fuzzy relation inequality؛ Linear programming؛ Max-Product؛ Wireless communication | ||
مراجع | ||
[1] Abbasi Molai, A. (2014). “A new algorithm for resolution of the quadratic programming problem with fuzzy relation inequality constraints”, Computers & Industrial Engineering, 72, 306-314, doi:10.1016/j.cie.2014.03.024.
[2] Abbasi Molai, A. (2023). “A covering-based algorithm for resolution of linear programming problems with max-product bipolar fuzzy relation equation constraints”, Journal of Mathematical Modeling, 11(4), 709-730, doi:10.22124/jmm.2023.24251.2172.
[3] AbbasiMolai,A.(2024).“ A new matrix-based algorithm for solving latticized linear programming subject to max-min-product fuzzy relation inequalities”, Iranian Journal of Fuzzy Systems, 21(5), 89-104, doi:10.22111/ijfs.2024.49647.8759.
[4] Aliannezhadi, S., Ardalan, S.S., Molai, A.A.(2017). ”Maximizing a monomial geometric objective function subject to bipolar max-product fuzzy relation constraints”, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32(1), 337-350, doi:10.3233/JIFS-151820.
[5] Bloch, I., Ralescu, A. (2023). “Fuzzy sets methods in image processing and understanding”, Medical Imaging Applications.
[6] Bourke, M., Fisher, D. (1998). “Solution algorithms for fuzzy relational equations with max-product composition”, Fuzzy Sets and Systems, 94, 61-69, doi:10.1016/S0165-0114(96)00246-1.
[7] Cao, B.Y. (2012). “The more-for-less paradox in fuzzy polynomials geometric programming”, Information Sciences, 211, 81-92, doi:10.1016/j.ins.2012.04.037.
[8] Chen, L., Wang, P.P. (2002). “Fuzzy relation equations the general and specialized solving algorithms”, Soft Computing, 6, 428-435, doi:10.1007/s00500-001-0157-3.
[9] Firouzian, S., Adabitabar Firozja, M. (2016). “Fuzzy number-valued fuzzy graph”, Control and Optimization in Applied Mathematics, 1(2), 77-86.
[10] Fishburn, P.C. (1974). “Lexicographic orders, utilities and decision rules a survey”, Management Science, 20, 1442-1471, doi:10.1287/mnsc.20.11.1442.
[11] Guu, S.-M., Wu, Y.-K. (2002). “Minimizing a linear objective function with fuzzy relation equation constraints”, Fuzzy Optimization and Decision Making, 1(4), 347-360, doi:10.1023/A:1020955112523.
[12] Hamidi, M., Norouzi, K., Rezaei, A. (2021). “On grey graphs and their applications in optimization”, Control and Optimization in Applied Mathematics, 6(2), 79-96, doi:10.30473/coam.2022.61195.1181.
[13] Hosseinyazdi, M., Hassankhani, A., Mashinchi, M. (2007). “Linear systems and optimization over Lattices”, International Review of Fuzzy Mathematics, 2(1).
[14] Li, J.X., Yang, S.J. (2012). “Fuzzy relation equalities about the data transmission mechanism in bittorrent-like peer-to-peer file sharing systems”, Proceedings of the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 452-456, doi:10.1109/FSKD.2012.6233956.
[15] Loetamonphong, J., Fang, S.C. (2001). “Optimization of fuzzy relation equations with max-product composition”, Fuzzy Sets and Systems, 118(3), 509-517, doi:10.1016/S0165-0114(98)00417-5.
[16] Markovskii, A.V. (2005). “On the relation between equations with max-product composition and the covering problem”, Fuzzy Sets and Systems, 153(2), 261-273, doi:10.1016/j.fss.2005. 02.010.
[17] Matusiewicz, Z., Drewnia, J. (2013). “Increasing continuous operations in fuzzy max-* equations and inequalities”, Fuzzy Sets and Systems, 232, 120-133, doi:10.1016/j.fss.2013.03.009.
[18] Peeva, K. (2013). “Resolution of fuzzy relational equations-method, algorithm and software with applications”, Information Sciences, 234, 44-63, doi:10.1016/j.ins.2011.04.011.
[19] Peeva, K., Kyosev, Y. (2007). “Algorithm for solving max-product fuzzy relational equations”, Soft Computing, 11, 593-605, doi:10.1007/s00500-006-0103-5.
[20] Peeva, K., Zahariev, Zl., Atanasov, Iv. (2008). “Optimization of linear objective function under max-product fuzzy relational constraints”, 9th WSEAS International Conference on Fuzzy Systems, Sofia, Bulgaria, 132-137.
[21] Qiu, J., Li, G., Yang, X. (2021). “Arbitrary-term-absent max-product fuzzy relation inequalities and its lexicographic minimal solution”, Information Sciences, 567, 167-184, doi:10.1016/j.ins.2021.03.021.
[22] Qiu, J., Li, G., Yang, X. (2021). “Bi-level optimization problem with random-term-absent max-product fuzzy relation inequalities constraint”, IEEE Transactions on Fuzzy Systems, 29, 3374-3388, doi:10.1109/TFUZZ.2020.3021726.
[23] Qiu, J., Li, G., Yang, X. (2024).“ Weighted-minimax programming subject to the RTA max-product fuzzy relation inequality system and its optimal strong solution”, Fuzzy Sets and Systems, 478, 108824, doi:10.1016/j.fss.2023.108824.
[24] Rashid, I., Gavalec, M., Cimler, R. (2016). “Eigenspace structure of a max-prod fuzzy matrix”, Fuzzy Sets and Systems, 303(15), 136-148, doi:10.1016/j.fss.2015.09.023.
[25] Sanchez, E. (1976). “Resolution of composite fuzzy relation equations”, Information and Control, 30, 38-48, doi:10.1016/S0019-9958(76)90446-0.
[26] Shieh, B.-S. (2008). “Deriving minimal solutions for fuzzy relation equations with max-product composition”, Information Sciences, 178, 3766-3774, doi:10.1016/j.ins.2008.05.030.
[27] Wu, Y., Guu, S. (2004). “Finding the complete set of minimal solutions for fuzzy relational equations with max-product composition”, International Journal of Operations Research, 1(1), 29-36.
[28] Yang, S.J. (2014). “An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition-min composition”, Fuzzy Sets and Systems, 255, 41-51, doi: 10.1016/j.fss.2014.04.007.
[29] Yang, X.(2021).“Deviation analysis for the max-product fuzzy relation in equalities”, IEEE Transactions on Fuzzy Systems, 29, 3782-3793, doi:10.1109/TFUZZ.2020.3028640.
[30] Yang, X.P., Zhou, X.G., Cao, B.Y. (2015). “Single-variable term semi-latticized fuzzy relation geometric programming with a max-product operator”, Information Sciences, 325, 271-287, doi: 10.1016/j.ins.2015.07.015.
[31] Yang, X.P., Zhou, X.G., Cao, B.Y. (2016). “Latticized linear programming subject to max-product fuzzy relation inequalities with application in wireless communication”, Information Sciences, 358-359, 44-55. , doi:10.1016/j.ins.2016.04.014.
[32] Yang, X.P., Zhou, X.G., Cao, B.Y. (2016). “Min-max programming problem subject to addition-min fuzzy relation inequalities”, IEEE Transactions on Fuzzy Systems, 24(1), 111-119, doi: 10.1109/TFUZZ.2015.2428716. | ||
آمار تعداد مشاهده مقاله: 18 تعداد دریافت فایل اصل مقاله: 16 |