
تعداد نشریات | 41 |
تعداد شمارهها | 1,190 |
تعداد مقالات | 10,230 |
تعداد مشاهده مقاله | 19,286,070 |
تعداد دریافت فایل اصل مقاله | 13,326,863 |
A Hybrid Numerical Approach for Solving Nonlinear Optimal Control Problems | ||
Control and Optimization in Applied Mathematics | ||
مقاله 8، دوره 10، شماره 1 - شماره پیاپی 19، شهریور 2025، صفحه 125-138 اصل مقاله (653.32 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.72875.1273 | ||
نویسندگان | ||
Rasoul Hatamian؛ Seyed Amjad Samareh Hashemi* | ||
Department of Mathematics, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran. | ||
چکیده | ||
This paper presents an iterative computational method for addressing constrained nonlinear optimal control problems, specifically those involving terminal state, state saturation, and control saturation constraints. The proposed approach reformulates the original problem into a sequence of constrained linear time-varying quadratic optimal control problems. This is achieved by iteratively approximating the nonlinear dynamic system using constrained linear time-varying models. Each reformulated problem is then converted into a standard quadratic programming problem by applying Chelyshkov polynomials in conjunction with a collocation method. Finally, the resulting problems are solved to obtain optimal control solutions | ||
کلیدواژهها | ||
Optimization؛ Nonlinear optimal control؛ Iterative method؛ Approximation؛ Chelyshkov polynomial | ||
مراجع | ||
[1] Ahmed, I.N., Ouda, E.H. (2020). “An iterative method for solving quadratic optimal control problem using scaling Boubaker polynomials”, Open Science Journal, 5(2), doi: 10.23954/osj.v5i2.2538.
[2] Alipour, M., Vali, M.A., Borzabadi, A.H. (2019). “A hybrid parametrization approach for a class of nonlinear optimal control problems”, Numerical Algebra, Control and Optimization, 9(4), 493-506, doi: 10.3934/naco.2019037.
[3] Banks, S.P., Dinesh, K. (2000). “Approximate optimal control and stability of nonlinear finite and infinite-dimensional systems”, Annals of Operations Research, 98, 19-44, doi: 10.1023/A: 1019279617898.
[4] Betts, J. T., (2020). “Practical methods for optimal control and estimation using nonlinear programming”, 3rd ed. SIAM, doi:10.1137/1.9780898718577.
[5] Chelyshkov, V.S. (2006). “Alternative orthogonal polynomials and quadratures”, Electronic Transactions on Numerical Analysis, 25(7), 17-26.
[6] Delphi, M., Shihab, S. (2019). “Modified iterative algorithm for solving optimal control problems”, Open Science Journal of Statistics and Application, 6(2), 20-27.
[7] Diveev, A., Sofronova, E., Konstantinov, S. (2021). “Approaches to numerical solution of optimal control problem using evolutionary computations”, Applied Sciences, 11(15), doi: 10.3390/app11157096.
[8] Eide, J.D., Hager, W.W., Rao, A.V.(2021).“ Modified Legendre–Gauss–Radau collocation method for optimal control problems with nonsmooth solutions”, Journal of Optimization Theory and Applications, 191, 600-633, doi: 10.1007/s10957-021-01810-5.
[9] Figueiredo, M.A.T., Nowak, R.D., Wright, S.J. (2007). “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems”, IEEE Journal of Selected Topics in Signal Processing, 1, 586-597, doi: 10.1109/JSTSP.2007.910281.
[10] Fischer, B. (2011). “Polynomial based iteration methods for symmetric linear systems”, Society for Industrial and Applied Mathematics, doi:10.1137/1.9781611971927.
[11] Frankowska, H., Zhang, H., Zhang, X.(2019).“Necessary optimality conditions for local minimizers of stochastic optimal control problems with state constraints”, Transactions of the American Mathematical Society, 327, 1289-1331.
[12] Gentle, J.E. (2024). “Matrix algebra theory, computations and applications in statistics”, Third Edition, Springer, doi: 10.1007/978-3-031-42144-0.
[13] Horn, R.A., Johnson, Ch.R. (2013). “Matrix analysis”, Second Edition, Cambridge University Press,
[14] Jaddu, H. (2002). “Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials”, Journal of the Franklin Institute, 339(4), 479-498, doi: 10.1016/S0016-0032(02)00028-5.
[15] Jaddu, H., Majdalawi, A. (2014). “Legendre polynomials iterative technique for solving a class of nonlinear optimal control problems”, International Journal of Control and Automation, 7, 17-28, doi: 10.14257/ijca.2014.7.3.03.
[16] Jaddu, H., Vlach, M. (2002). “Successive approximation method for non-linear optimal control problems with applications to a container crane problem”, Optimal Control Applications and Methods, 23(5), 275-288, doi: 10.1002/oca.713.
[17] Kendall, A., Weimin, H. (2009). “Theoretical numerical analysis, A functional analysis framework”, 3rd Ed., Springer, doi: 10.1007/978-1-4419-0458-4.
[18] Mehne, H.H., Borzabadi, A.H. (2006). “A numerical method for solving optimal control problems using state parameterization”, Numerical Algorithms, 42, 165-169, doi: 10.1007/s11075-006-9035-5.
[19] Samareh Hashemi, S.A., Saeedi, H., Foroush Bastani, A. (2024). “A hybrid Chelyshkov wavelet-finite differences method for time-fractional black-Scholes equation”, Journal of Mahani Mathematical Research, 13(2), 423-452, doi: 10.22103/jmmr.2024.22371.1526.
[20] Tomas-Rodriguez, M., Banks, S.P.(2003).“ Linear approximations to nonlinear dynamical systems with applications to stability and spectral theory”, IMA Journal of Control and Information, 20(1), 89-103, doi:10.1093/imamci/20.1.89.
[21] Tomas-Rodriguez, M., Banks, S.P. (2006). “An iterative approach to eigenvalue assignment for nonlinear systems”, Proceedings of the 45th IEEE Conference on Decision & Control, 977-982, doi: 10.1109/CDC.2006.376758.
[22] Vlassenbroeck, J. (1988). “A Chebyshev polynomial method for optimal control with state constraints”, Automatica, 24(4), 499-506, doi: 10.1016/0005-1098(88)90094-5. | ||
آمار تعداد مشاهده مقاله: 75 تعداد دریافت فایل اصل مقاله: 92 |