
تعداد نشریات | 41 |
تعداد شمارهها | 1,184 |
تعداد مقالات | 10,192 |
تعداد مشاهده مقاله | 19,148,958 |
تعداد دریافت فایل اصل مقاله | 13,260,082 |
Mathematical Modelling of Malaria Spread in Response to Climate Variability in Sudan | ||
Control and Optimization in Applied Mathematics | ||
مقاله 3، دوره 10، شماره 1 - شماره پیاپی 19، شهریور 2025، صفحه 33-55 اصل مقاله (14.35 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.73788.1292 | ||
نویسندگان | ||
Gassan A.M.O. Farah* ؛ Abdulaziz Mukhtar؛ Kailash C. Patidar | ||
Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa. | ||
چکیده | ||
Malaria continues to represent a significant public health concern in Sudan, with cases rising over 40% from 2015 to 2020. This research investigates how climate change affects malaria transmission patterns using a mathematical model in an ordinary differential equation framework. The analysis involves calculating the basic reproduction number and evaluating the system's qualitative properties to gain insights into disease dynamics. Additionally, a sensitivity analysis is conducted to evaluate how climatic conditions, e.g., rainfall and temperature, influence key model parameters. Statistical approaches are utilized to estimate parameters and calibrate the model using empirical data from Sudan, ensuring consistency between the model and observed trends. Numerical simulations demonstrate the growing influence of climate variability on the spatial distribution of malaria vectors and the transmission progression over time. The study establishes a strong association between climatic changes and the exacerbation of malaria prevalence in Sudan. These findings emphasize the urgent need for climate-adaptive strategies, including improved vector control, strengthened surveillance systems, and climate-resilient public health interventions, to address the increased risks posed by changing environmental conditions. The research provides valuable insights to inform evidence-based policies aimed at reducing malaria transmission in Sudan and other regions that are experiencing similar challenges due to climate change. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Malaria؛ Climate change؛ Mathematical modelling؛ Stability analysis؛ Numerical simulation | ||
مراجع | ||
[1] Abdelrazecy, A., Okuneye, K., Gumel, A.B. (2018). “Mathematical analysis of a weather-driven model for the population ecology of mosquitoes”, Mathematical Biosciences & Engineering, 15(1), 57-93, doi: 10.3934/mbe.2018003.
[2] Abdu, Z., Mohammed, Z., Bashier, I., Eriksson, B. (2004). “The impact of user fee exemption on service utilization and treatment seeking behaviour: The case of malaria in Sudan”, The International Journal of Health Planning and Management, 19(1), 95-106, doi: 10.1002/hpm.777.
[3] Adam, I., Ibrahim, Y., Elhardello, O. (2018). “Prevalence, types, and determinants of anemia among pregnant women in Sudan: A systematic review and meta-analysis”, BMC Hematology, 18(1), 1-8, doi: 10.1186/s12878-018-0124-1.
[4] Akbari, R., Leader, N., Mohammad, S. (2024). “Dynamical behaviour of fractional order SEIR mathematical model for infectious disease transmission”, Control and Optimization in Applied Mathematics, 9(1), 35-48, doi: 10.30473/coam.2023.64849.1210.
[5] Baker, R.E., Mahmud, A.S., Miller, I.F., Rajeev, M., Rasambainarivo, F., Rice, B.L., Takahashi, S., Tatem, A.J., Wagner, C.E., Wang, L.F., Wesolowski, A. (2022). “Infectious disease in an era of global change”, Nature Reviews Microbiology, 20(4), 193-205, doi: 10.1038/ s41579-021-00639-z.
[6] Beck-Johnson, L.M., Nelson, W.A., Krijn, P.P., Read, A.F., Thomas, M.B., Bjørnstad, O.N. (2013). “The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission”, PLOS One, 8(11), 79276, doi: 10.1371/journal.pone.0079276.
[7] Birkhoff, G., Carlo-Rota, G. (1989). “Ordinary differential equations”, John Wiley & Sons Inc John Wiley and Sons Inc., New York, USA.
[8] Blanford, J.I., Blanford, S., Crane, R.G., Mann, M.E., Paaijmans, K.P., Schreiber, K.V., Thomas, M.B. (2013). “Implications of temperature variation for malaria parasite development across Africa”, Scientific Reports, 3(1) 1-11, doi: 10.1038/srep01300.
[9] Chitnis, N., Smith, T., Steketee, R. (2008). “A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population”, Journal of Biological Dynamics, 2(3), 259-285, doi: 10.1080/17513750701769857.
[10] Cobremesk, A.A., Krogstad, H.E. (2015). “Mathematical modeling of endemic transmission”, American Journal of Applied Mathematics, 3(2), 36-46, doi: 10.11648/j.ajam.20150302.12.
[11] Coetzee, M., Horne, D.W.K., Brooke, B.D., Hunt, R.H. (1999). “DDT, dieldrin and pyrethroid insecticide resistance in African malaria vector mosquitoes: An historical review and implications for future malaria control in southern Africa”, South African Journal of Science, 95(5), 215-218.
[12] Craig, M.H., Sueur, D.L., Snow, B. (1999). “A climate-based distribution model of malaria transmission in sub-Saharan Africa”, Parasitology Today, 15(3), 05-111, doi: 10.1016/S0169-4758(99)01396-4.
[13] Dafallah, E.S., El-Agib, F.H., Bushra, G.O. (2003). “Maternal mortality in a teaching hospital in Sudan”, Saudi Medical Journal, 24(4), 369-372.
[14] Dastjerdi, R.H., Ahmadi, G., Dadkhah, M., Ayatillah, Y. (2023). “Optimal control of infectious disease using the artificial neural networks”, Control and Optimization in Applied Mathematics, 8(2), 17-32, doi: 10.30473/coam.2023.64776.1208.
[15] Driessche, P.V.d., Watmough, J. (2002). “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Mathematical Biosciences, 180(1-2), 29-48, doi: 10.1016/S0025-5564(02)00108-6.
[16] Gashaw, K.W., Kassa, S.M., Ouifki, R. (2019). “Climate-dependent malaria disease transmission model and its analysis“, International Journal of Biomathematics, 12(8), 1950087, doi: 10.1142/S1793524519500876.
[17] Hoshen, M.B., Morse, A.P. (2004). “A weather-driven model of malaria transmission”, Malaria Journal, 3(1), 1-14, doi: 10.1186/1475-2875-3-32.
[18] Joe, K., Ogana, W., Nyandwi, S., Kwizera, J.D.D., Niyukuri, D. (2024). “A mathematical model exploring the impact of climatic factors on malaria transmission dynamics in Burundi”, Journal of Applied Mathematics and Physics, 12(11), 3728-3757, doi: 10.4236/jamp.2024.1211224.
[19] Kuehn, A., Pradel, G. (2010). “The coming-out of malaria gametocytes”, Journal of Biomedicine and Biotechnology, 2010(1), doi: 10.1155/2010/976827.
[20] Lindsay, S.W., Birley, M.H. (1996). “Climate change and malaria transmission”, Annals of Tropical Medicine & Parasitology, 90(5), 573-588, doi: 10.1080/00034983.1996.11813087.
[21] Martens, W.J., Louis, W.N., Rotmans, J., Jetten, T.H., McMichael, J.A. (1995). “Potential impact of global climate change on malaria risk”, Environmental Health Perspectives, 103(5), 458-464, doi: 10.1289/ehp.95103458.
[22] Mordecai, E.M., Ryan, S.J., Caldwell, J.M., Shah, M.M., LaBeaud, A.D. (2020). “Climate change could shift disease burden from malaria to arboviruses in Africa”, The Lancet Planetary Health, 4(9), doi: 10.1016/S2542-5196(20)30178-9.
[23] Mukhtar, A.Y.A., Munyakazi, J.B. Ouifki, R. (2019). “Assessing the role of climate factors on malaria transmission dynamics in South Sudan”, Mathematical Biosciences, 310, 13-23, doi: 10.1016/j.mbs.2019.01.002.
[24] National malaria control programme (NMCP), Sudan (2024), https://mesamalaria.org/institution/national-malaria-control-programme-nmcp-sudan.
[25] Ngarakana-Gwasira, E.T., Bhunu, C.P., Masocha, M., Mashonjowa, E. (2016). “Assessing the role of climate change in malaria transmission in Africa”, Malaria Research and Treatment, 2016(1), doi: 10.1155/2016/7104291.
[26] Osman, A.A., Osman, Y.E., Ibrahim, Y., Mussa, A., Mohamed, Z., Suppain, R., Hajissa, K. (2022). “Prevalence of malaria among clinically suspected patients and pregnant women in Sudan: A systematic review and meta-analysis”, SN Comprehensive Clinical Medicine, 4(1), 1-12, doi: 10.1007/s42399-022-01160-x.
[27] Paaijmans, K.P., Cator, L.J., Thomas, M.B. (2013). “Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity”, PLOS One, 8(1), e55777, doi: 10.1371/journal.pone.0055777.
[28] Paaijmans, K.P., Blanford, S., Bell, A.S., Blanford, J.I., Read, A.F., Thomas, M.B. (2010). “Influence of climate on malaria transmission depends on daily temperature variation”, Proceedings of the National Academy of Sciences, 107(34), 15135-15139, doi: 10.1073/pnas.1006422107.
[29] Tran, A., L’Ambert, G., Lacour, G., It, R.B., Demarchi, M., Cros, M., Cailly, P., AubryKientz, M., Balenghien, T., Ezanno, P. (2013). “A rainfall-and temperature-driven abundance model for Aedes albopictus populations”, International Journal of Environmental Research and Public Health, 10(5), 1698-1719, doi: 10.3390/ijerph10051698.
[30] World health organization (WHO) and global malaria programme (2022).
[31] Yang, H.M. (2000). “Malaria transmission model for different levels of acquired immunity and temperature dependent parameters vector”, Revista de Saude Publica, 34, 223-231, doi: 10.1590/S0034-89102000000300008. | ||
آمار تعداد مشاهده مقاله: 284 تعداد دریافت فایل اصل مقاله: 2,221 |