
تعداد نشریات | 41 |
تعداد شمارهها | 1,184 |
تعداد مقالات | 10,192 |
تعداد مشاهده مقاله | 19,148,978 |
تعداد دریافت فایل اصل مقاله | 13,260,102 |
Mesh-Free RBF-FD Method with Polyharmonic Splines and Polynomials for High-Dimensional PDEs and Financial Option Pricing | ||
Control and Optimization in Applied Mathematics | ||
مقاله 12، دوره 10، شماره 1 - شماره پیاپی 19، شهریور 2025، صفحه 193-215 اصل مقاله (1.54 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.73348.1281 | ||
نویسندگان | ||
Narges Hosseinzadeh؛ Elyas Shivanian* ؛ Saeid Abbasbandy | ||
Department of Applied Mathematics, Imam Khomeini International University, Qazvin, Iran. | ||
چکیده | ||
This study employs the radial basis function-generated finite difference (RBF-FD) method to address high-dimensional elliptic differential equations under Dirichlet boundary conditions. The method utilizes polyharmonic spline functions (PHSs) combined with polynomials for approximation. A notable benefit of this approach is that PHSs do not require a shape parameter, simplifying implementation and enhancing numerical stability. The proposed method offers several advantages, including high accuracy, rapid computation, and adaptability to complex geometries and irregular node arrangements. It is particularly effective for high-dimensional problems, providing a mesh-free alternative that scales efficiently with increased complexity. Beyond scientific computing, the method is also applied to financial option pricing, where integro-differential equations are transformed into a series of second-order elliptic partial differential equations (PDEs). Numerical experiments demonstrate that the proposed algorithm significantly outperforms existing RBF-based approaches in both accuracy and efficiency. These strengths make it a robust tool for solving a wide range of PDEs in both regular and irregular domains. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Radial basis functions؛ Polyharmonic splines؛ High-dimensional partial differential equations؛ Finite difference method؛ Option pricing | ||
مراجع | ||
[1] Abd-Elhameed, W.M., Atta, A.G., Youssri, Y.H. (2022). “Shifted fifth-kind Chebyshev polynomials Galerkin based procedure for treating fractional diffusion-wave equation”, International Journal of Modern Physics C, 33(8), 2250102, doi:10.1142/S0129183122501026. [2] Atta, A.G., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H. (2022). “A fast Galerkin approach for solving the fractional Rayleigh–Stokes problem via sixth-kind Chebyshev polynomials”, Mathematics, 10(11), 1843, doi:10.3390/math10111843. [3] Atta, A.G., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H. (2022). “Modal shifted fifth-kind Chebyshev Tau integral approach for solving heat conduction equation”, Fractal and Fractional, 6(11), 619, doi:10.3390/fractalfract6110619. [4] Atta, A.G., Youssri, Y.H. (2022). “Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel”. Computational and Applied Mathematics, 41(8), 381, doi:10.1007/s40314-022-01904-1. [5] Bayona, V., Flyer, N., Fornberg, B. (2019). “On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries”, Journal of Computational Physics, 380, 378-399, doi:10.1016/j.jcp. 2018.12.036. [6] Bayona, V., Flyer, N., Fornberg, B., Barnett, G.A. (2016). “On the role of polynomials in RBFFD approximations: I. Interpolation and accuracy”, Journal of Computational Physics, 321, 21- 38, doi:10.1016/j.jcp. 2016.05.005. [7] Fasshauer, G.E. (2007). “Mesh-free Approximation Methods with MATLAB, volume 44, World Scientific Publishers, Singapore, doi:10.1142/9789812706331. [8] Fasshauer, G.E., Zhang, J.G. (2007). “On choosing 'optimal' shape parameters for RBF approximation”, Numerical Algorithms, 45, 345-368, doi:10.1007/s11075-007-9072-8. [9] Fornberg, B., Flyer, N. (2015).“A primer on radial basis functions with applications to the geosciences”, SIAM, Philadelphia, doi:10.1137/1.9781611974041. [10] Fornberg, B., Flyer, N. (2015). “Solving PDEs with radial basis functions”, Acta Numerica, 24, 215-258, doi:10.1017/S096249291500005X. [11] Fornberg, B., Piret, C. (2008). “On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere”, Journal of Computational Physics, 227, 2758-2780, doi:10.1016/j.jcp.2007.11.013. [12] Fornberg, B., Bayona, V., Flyer, N., Barnett, G.A. (2017). “On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs”, Journal of Computational Physics, 332, 257-273, doi:10.1016/j.jcp.2016.12.041. [13] Haghighi, D., Abbasbandy, S., Shivanian, E. (2023). “Study of the Fragile Points Method for solving two-dimensional linear and nonlinear wave equations on complex and cracked domains”, Engineering Analysis with Boundary Elements, 146, 44-55, 10.1016/j.enganabound.2022.09.036. [14] Hardy, R.L. (1971). “Multiquadric equations of topography and other irregular surfaces”, Journal of Geophysical Research, 76, 1905-1915, doi:10.1029/JB076i008p01905. [15] Hosseinzadeh, N., Shivanian, E., Fairooz, M.Z., Chegini, T.G. (2025). “A robust RBF-FD technique combined with polynomial enhancements for valuing European options in jump-diffusion frameworks”, International Journal of Dynamics and Control, 13, 212, 10.1007/s40435-025-01722-6. [16] Kansa, E.J. (1990). “Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics I: Surface approximations and partial derivative estimates”, Computers & Mathematics with Applications, 19, 127-145, doi:10.1016/0898-1221(90)90270-T. [17] Kansa, E.J. (1990). “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations”, Computers & Mathematics with Applications, 19, 147-161. doi:10.1016/0898-1221(90)90271-K. [18] Moscoso, M., Bayona, V., Kindelan, M. (2011). “Optimal constant shape parameter for multiquadric based RBF-FD method”, Journal of Computational Physics, 230, 7384-7399, doi:10.1016/j.jcp.2011.06.025. [19] Moscoso, M., Bayona, V., Kindelan, M. (2012). “Optimal variable shape parameter for multiquadric based RBF-FD method”, Journal of Computational Physics, 231, 2466-2481, doi:10.1016/j.jcp.2011.12.036. [20] Phys, J.C. (2006). “Scattered node compact finite difference-type formulas generated from radial basis functions”, Engineering Analysis with Boundary Elements, 212, 99-123, doi:10.1016/j.jcp.2005.05.030. [21] Rahimi, A., Shivanian, E. (2023). “An efficient RBF-FD method using polyharmonic splines alongside polynomials for the numerical solution of two-dimensional PDEs held on irregular domains and subject to Dirichlet and Robin boundary conditions”, International Journal of Nonlinear Analysis and Applications, (1), doi:10.22075/IJNAA.2023.28181.3826. [22] Schaback, R. (1995). “Error estimates and condition numbers for radial basis function interpolants”, Advances in Computational Mathematics, 3, 251-264, doi:10.1007/BF02123482. [23] Shirzadi, M., Dehghan, M., Foroush Bastani, A. (2021). “A trustable shape parameter in the kernel-based collocation method with application to pricing financial options”, Engineering Analysis with Boundary Elements, 126, 108-117, doi:10.1016/j.enganabound.2021.02.005. [24] Shivanian, E., Khodabandehlo, H.R., Abbasbandy, S. (2022). “Numerical solution of nonlinear delay differential equations of fractional variable-order using a novel shifted Jacobi operational matrix”, Engineering with Computers, 38, 204-219, doi:10.1007/s00366-020-01114-1. [25] Shivanian, E., Jafarabadi, A., Chegini, T.G., Dinmohammadi, A. (2025). “Analysis of a time-dependent source function for the heat equation with nonlocal boundary conditions through a local meshless procedure”, Computational & Applied Mathematics, 44, 282, 10.1007/s40314-025-03246-3. [26] Shivanian, E., Hajimohammadi, Z., Baharifard, F., Parand, K., Kazemi, R. (2023). “A novel learning approach for different profile shapes of convecting–radiating fins based on shifted Gegenbauer LSSVM”, New Mathematics and Natural Computation, 19 (1), 195-215, 10.1142/S1793005723500060. | ||
آمار تعداد مشاهده مقاله: 34 تعداد دریافت فایل اصل مقاله: 65 |