
تعداد نشریات | 41 |
تعداد شمارهها | 1,189 |
تعداد مقالات | 10,221 |
تعداد مشاهده مقاله | 19,265,173 |
تعداد دریافت فایل اصل مقاله | 13,311,417 |
An Enhanced QAOM-Based MAGDM Framework: Integrating Entropy Weighting and Expert Judgment Aggregation | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 23 خرداد 1404 اصل مقاله (503.76 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.73429.1283 | ||
نویسندگان | ||
Ali Dehghani Filabadi؛ Hossein Nahid Titkanlue* | ||
Department of Industrial Engineering, Payame Noor University, Tehran, Iran. | ||
چکیده | ||
Addressing complex decision-making scenarios, particularly those involving multiple criteria and expert perspectives, often requires robust frameworks capable of managing uncertainty and qualitative assessments. The Qualitative Absolute Order-of-Magnitude (QAOM) model offers a flexible approach for expressing subjective evaluations through linguistic terms with adjustable levels of detail. However, practical challenges remain in applying QAOM, including the absence of an inherent system for deriving attribute weights, limitations in coherently synthesizing the judgments from multiple experts, and the lack of systematic normalization procedures for negatively oriented attributes. To address these issues, this paper proposes an advanced multi-attribute group decision-making (MAGDM) framework fully embedded within the QAOM paradigm. The proposed solution introduces a mathematically consistent metric for comparing linguistic assessments, an entropy-based attribute weighting approach rooted in qualitative information, and an aggregation process that reflects expert diversity. Furthermore, a specialized normalization protocol is developed to handle negative attributes across heterogeneous scales. The feasibility and advantages of the method are validated through comprehensive examples and comparative analyses, highlighting improvements over traditional techniques in terms of objectivity, flexibility, and analytical depth. Overall, these developments markedly enhance the capabilities of QAOM-based MAGDM, equipping decision-makers with more nuanced and reliable tools for tackling complex problems characterized by imprecision and divergent expert opinions. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Qualitative reasoning؛ Multi-attribute decision making؛ Ranking؛ Qualitative absolute order-of-magnitude | ||
مراجع | ||
[1] Abouhawwash, M., Jameel, M., Askar, S.S. (2023). “Multi-criteria decision making model for analysis hydrogen production for economic feasibility and sustainable energy”, Multicriteria Algorithms With Applications, 1, 31-41. https://doi.org/10.61356/j.mawa.2023.16161 [2] Afsordegan, A. (2015). “A contribution to multi-criteria decision making in sustainable energy management based on fuzzy and qualitative reasoning”, Doctoral dissertation, Universitat Politècnica de Catalunya. https://doi.org/10.5821/dissertation-2117-96001 [3] Afsordegan, A., Sánchez, M., Agell, N., Aguado, J.C., Gamboa, G. (2016a). “Absolute order-of-magnitude reasoning applied to a social multi-criteria evaluation framework”, Journal of Experimental & Theoretical Artificial Intelligence, 28(1-2), 261-274. https://doi.org/10.1080/095 2813X.2015.1024489 [4] Afsordegan, A., Sánchez, M., Agell, N., Zahedi, S., Cremades, L.V. (2016b). “Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives”, International Journal of Environmental Science and Technology, 13(6), 1419-1432. https://doi.org/10.1007/s13762-016-0982-7 [5] Agell, N., Sánchez, M., Prats, F., Roselló, L. (2012). “Ranking multi-attribute alternatives on the basis of linguistic labels in group decisions”, Information Sciences, 209, 49-60. https://doi.org/10.1016/j.ins.2012.05.005 [6] Aggarwal, M. (2020). “Entropy-based subjective choice models”, IEEE Transactions on Knowledge and Data Engineering, 32(5), 2164-2175. https://doi.org/10.1109/TKDE.2020.301 2061 [7] Akram, M., Ali, G., Alcantud, J. C. R., Sitara, W. (2022). “Group decision-making with Fermatean fuzzy soft expert knowledge”. Artificial Intelligence Review, 55(7), 5349–5389. https://doi.org/10.1007/s10462-021-10119-8 [8] Ali, A., Muthuswamy, M. (2023). “Neutrosophic multi-criteria decision-making framework for sustainable evaluation of power production systems in renewable energy sources”, Sustainable Machine Intelligence Journal, 4(3), 1-10. https://doi.org/10.61185/SMIJ.2023.44103 [9] Ali, R., Rahman, K., Muhammad, J. (2024). “Complex Fermatean fuzzy models and their algebraic aggregation operators in decision-making: A case study on COVID-19 vaccine selection”, Journal of Operational and Strategic Analytics, 2(2), 119-135. https://doi.org/10. 56578/josa020205 [10] Al-Saeed, S., AbdelAziz, N.M. (2023). “Integrated neutrosophic best-worst method for comprehensive analysis and ranking of flood risks: A case study approach from Aswan, Egypt.” Neutrosophic Systems with Applications, 5(1), 10-26. https://doi.org/10.61356/j.nswa.2023.24 [11] Ayala Ayala, L.R., Hernández Ramos, E.L., Contento Correa, S.A. (2024). “Neutrosophic TOPSISOWA framework for evaluating data protection strategies in judicial systems”, Journal of Fuzzy Extension and Applications, 5 (Special Issue), 1-11. https://doi.org/10.22105/jfea.2024. [12] Baykasouglu, A., Gölcük, I. (2015). “Development of a novel multiple-attribute decision making model via fuzzy cognitive maps and hierarchical fuzzy TOPSIS”, Information Sciences, 301, 75-98. https://doi.org/10.1016/j.ins.2014.12.048 [13] Baykasouglu, A., Gölcük, I. (2017). “Development of an interval type-2 fuzzy sets based hierarchical MADM model by combining DEMATEL and TOPSIS”, Expert Systems with Applications, 70(15), 37-51. https://doi.org/10.1016/j.eswa.2016.11.001 [14] Cai, L., Janowicz, K., Zhu, R., Yan, B., He, S. (2023). “HyperQuaternionE: A hyperbolic embedding model for qualitative spatial and temporal reasoning”, GeoInformatica, 27(1), 159-197. https://doi.org/10.1007/s10707-022-00469-y [15] Chen, C.-T. (2000). “Extensions of the TOPSIS for group decision-making under fuzzy environment”, Fuzzy Sets and Systems, 114(1), 1-9. https://doi.org/10.1016/S0165-0114(97) 00377-1 [16] Chen, Y., Dong, L. (2024). “A framework for assessment of logistics enterprises’ safety standardization performance based on prospect theory”, Journal of Operations Intelligence, 2(1), 153-166. https://doi.org/10.31181/jopi21202418 [17] Chen, S.-M., Lee, L.-W. (2010). “Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method”, Expert Systems with Applications, 37(4), 2790-2798. https: [18] Dehghani Fil Abadi, A. (2023). “Presenting a model for selecting the best supplier in the space of qualitative reasoning, a new approach for multi-attribute decision-making”, Journal of Industrial Engineering Research in Production Systems, 11(22), 69-81. https://doi.org/10.22084/ [19] De Soto, A. R. (2011). “A hierarchical model of a linguistic variable”. Information Sciences, 181(20), 4394-4408. https://doi.org/10.1016/j.ins.2011.04.006 [20] Dong, Q., Cooper, O. (2016). “An orders-of-magnitude AHP supply chain risk assessment framework”. International Journal of Production Economics, 182, 144–156. https://doi.org/10.1016/j.ijpe.2016.08.021 [21] Dubois, D. (1980). “Fuzzy sets and systems: Theory and applications”, Academic Press, 144, 1-393. [22] Espinilla, M., Liu, J., Martínez, L. (2011). “An extended hierarchical linguistic model for decisionmaking problems”, Computational Intelligence, 27(3), 489-512. https://doi.org/10.1111/j.1467-8640.2011.00385.x [23] Forbus, K. D. (2004). “Qualitative reasoning”. In A. B. Tucker (Ed.), Computer Science Handbook (2nd ed., pp. 20-1–20-25). Chapman and Hall/CRC. https://doi.org/10.1201/9780203494455 [24] Jin, C., Mi, J., Li, F., et al. (2023). “An improved TOPSIS method for multi-criteria decision making based on hesitant fuzzy β neighborhood”. Artificial Intelligence Review, 56 (Suppl 1), 793–831. https://doi.org/10.1007/s10462-023-10510-7 [25] Gu, Y., Xu, K., Hu, X., Chen, M. (2024). “Research on improving the financial capacity of farmers based on fuzzy analytic hierarchy process”, Management Analytics and Social Insights, 1(1), 88-102. http://noo.rs/Zj8YP [26] Hesamian, G., Dehghani, A. (2021). “A preference degree for ranking k-dimensional vectors of linguistic labels and its application in multi-attribute group decision-making”, Journal of Experimental & Theoretical Artificial Intelligence, 33(6), 933-944. https://doi.org/10.1080/0952813X.2020.1794233 [27] Hwang, C.-L., Yoon, K. (1981). “Multiple attribute decision making: Methods and applications, a state-of-the-art survey”, Springer-Verlag. https://doi.org/10.1007/978-3-642-48318-9 [28] Jia, F., Wang, Y., Su, Y. (2023). “GRA-based dynamic hybrid multi-attribute three-way decisionmaking for the performance evaluation of elderly-care services”, Mathematics, 11(14), Article 3176. https://doi.org/10.3390/math11143176 [29] Kuipers, B. J. (1993). “Reasoning with qualitative models”. Artificial Intelligence, 59(1-2), 125–132. https://doi.org/10.1016/0004-3702(93)90178-E [30] Kuppusamy, M., Singh, J., Raman, P., Abdolrahimi, N. (2024). “Advanced decision analytics with fuzzy logic integrating AI and computational thinking for personnel selection”, Journal of Fuzzy Extension and Applications, 5(4), 679-699. https://doi.org/10.22105/jfea.2024. [31] Liu, Z. (2024). “A belief similarity measure for Dempster-Shafer evidence theory and application in decision making”, Journal of Soft Computing and Decision Analytics, 2(1), 213-224. https://doi.org/10.31181/jscda21202443 [32] Mohamed, Z., Ismail, M., Abd El-Gawad, A. (2023). “Sustainable supplier selection using neutrosophic multi-criteria decision making methodology”, Sustainable Machine Intelligence Journal, 3(2), 1-9. https://doi.org/10.61185/SMIJ.2023. 33102 [33] Mohamed, M., Salam, A., Ye, J., Yong, R. (2024). “A hybrid triangular fuzzy SWARA-MAROCS approach for selecting optimal and smart logistic enterprise based on IoT, blockchain, and UAVs”, Multicriteria Algorithms with Applications, 4, 1-15. https://doi.org/10.61356/j. mawa.2024.4241 [34] Morente-Molinera, J.A., Wu, X., Morfeq, A., Al-Hmouz, R., Herrera-Viedma, E. (2020). “A novel multi-criteria group decision-making method for heterogeneous and dynamic contexts using multigranular fuzzy linguistic modelling and consensus measures”, Information Fusion, 53, 240-250. https://doi.org/10.1016/j.inffus.2019.06.028
[36] Rodriguez, R.M., Martinez, L., Herrera, F. (2012). “Hesitant fuzzy linguistic term sets for decision making”, IEEE Transactions on Fuzzy Systems, 20(1), 109-119. https://doi.org/10.1109/ [37] Roselló, L., Prats, F., Agell, N., Sánchez, M. (2010). “Measuring consensus in group decisions by means of qualitative reasoning”, International Journal of Approximate Reasoning, 51(4), 441-452. https://doi.org/10.1016/j.ijar.2010.01.002 [38] Salehi, M., Jabarpour, E. (2020). “Modeling and solving a multi-objective location-routing problem considering the evacuation of casualties and homeless people and fuzzy paths in relief logistics”, Control and Optimization in Applied Mathematics, 5(1), 41-65. https://doi.org/10.30473/coam.2021.53682.1142 [39] Shannon, C.E. (2001). “A mathematical theory of communication”, ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3-55. https://doi.org/10.1145/584091.584093 [40] Sivadas, A., John, S.J. (2024). “Entropy and similarity measures of q-rung orthopair fuzzy soft sets and their applications in decision making problems”, Journal of Fuzzy Extension and Applications, 5(4), 660-678. https://doi.org/10.22105/jfea.2024.456028.1466 [41] Titkanloo, H.N., Keramati, A., Fekri, R. (2018). “Data aggregation in multi-source assessment model based on evidence theory”, Applied Soft Computing, 69, 443-452. https://doi.org/10.1016/j.asoc.2018.05.001 [42] Travé-Massuyès, L., Piera, N. (1989). “The orders of magnitude models as qualitative algebras”, extit Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI’89) (1261–1266). Morgan Kaufmann. https://dx.doi.org/10.5555/1623891.1623957 (https://hal.science/hal-03325964v1) [43] Travé-Massuyès, L., Prats, F., Sánchez, M., Agell, N. (2005). “Relative and absolute order-of-magnitude models unified”, Annals of Mathematics and Artificial Intelligence, 45(3-4), 323-341. https://doi.org/10.1007/s10472-005-9002-1 [44] Yaghoubi, M., Dadmand, F. (2024). “A multi-objective model for humanitarian logistics model during an earthquake crisis: A case study of Iran”, Control and Optimization in Applied Mathematics, 9(2), 21-41. https://doi.org/10.30473/coam.2024.68031.1238 [45] Ye, J., Yong, R., Du, W. (2024). “MAGDM model using single-valued neutrosophic credibility matrix energy and its decision-making application”, Neutrosophic Systems with Applications, 17, 1-20. https://doi.org/10.61356/j.nswa.2024 .17243 | ||
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 35 |