| تعداد نشریات | 49 |
| تعداد شمارهها | 1,261 |
| تعداد مقالات | 10,847 |
| تعداد مشاهده مقاله | 22,204,752 |
| تعداد دریافت فایل اصل مقاله | 14,929,283 |
Analysis technique of trihalomethanes by GC-FID device | ||
| Iranian Journal of Analytical Chemistry | ||
| دوره 12، شماره 1 - شماره پیاپی 23، خرداد 2025، صفحه 109-122 اصل مقاله (1.18 M) | ||
| نوع مقاله: Full research article | ||
| شناسه دیجیتال (DOI): 10.30473/ijac.2025.76092.1327 | ||
| نویسندگان | ||
| Keivan Shayesteh* 1؛ K. Karimi2؛ Nabiollah Sepehri3؛ Zohreh Mozafari4 | ||
| 1گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
| 2PhD Student, Dept. of Chemical Engineering, Faculty of Engineering,University of Mohaghegh Ardabili, Ardabil, Iran | ||
| 3Expert in Charge of Chemical and Device Laboratories, Shiraz Water and Wastewater Company, Shiraz, Iran | ||
| 4Quality Monitoring and Control Director, Shiraz Water and Wastewater Company, Shiraz, Iran | ||
| چکیده | ||
| In water chlorination for removing pathogens, trihalomethanes (THMs) are among the significant carcinogenic by-products of drinking water chlorination. The conventional measurement means for these compounds is a GC device with an ECD detector (GC-ECD) or GC/MS. A GC-ECD or a GC/MS is utilized for analyzing THMs at the microgram per liter scale. Purchasing an ECD detector is not easy or cost-effective. This article introduces a new concentration method using the Head Space technique in a GC-FID device for measuring the concentration of THMs. In this method, four compounds, chloroform (CHCl3), di-bromochloromethane (CHClBr2), bromodichloromethane (CHCl2Br) and bromoform (CHBr3), are plotted on a 5-point calibration chart after being measured on a microgram per liter scale. This method, designed in a laboratory, can be used to measure concentrations and analyze data in the laboratories of water and wastewater, environment, petroleum and petrochemistry, etc. High accuracy of the method (µg/L) is the main feature of this method. Here, the design method and advantages of this method are presented with diagrams and tables. | ||
| کلیدواژهها | ||
| Measurement accuracy؛ Concentration method؛ Water distribution network؛ Head Space technique؛ Electron Capture Detector (GC-ECD) | ||
| عنوان مقاله [English] | ||
| تکنیک آنالیز تری هالومتان ها با دستگاه GC-FID | ||
| نویسندگان [English] | ||
| کیوان شایسته1؛ | ||
| چکیده [English] | ||
| در کلرزنی آب برای حذف عوامل بیماریزا، تریهالومتانها (THMs) از جمله محصولات جانبی سرطانزای مهم کلرزنی آب آشامیدنی هستند. ابزار اندازهگیری مرسوم برای این ترکیبات، دستگاه GC با آشکارساز ECD یا دستگاه GC/MS است. از GC-ECD یا GC/MS برای آنالیز THMها در مقیاس میکروگرم در لیتر استفاده میشود. خرید آشکارساز ECD بخاطر تحریم های بین المللی آسان یا مقرون به صرفه نیست. این مقاله یک روش تغلیظ جدید با استفاده از تکنیک فضای فوقانی در دستگاه GC- FID برای اندازهگیری غلظت THMها معرفی میکند. در این روش، چهار ترکیب، کلروفر (CHCl3)، دی-برموکلرومتان (CHClBr2)، برومودیکلرومتان (CHCl2Br) و بروموفرم (CHBr3)، پس از اندازهگیری در مقیاس میکروگرم در لیتر، روی یک نمودار کالیبراسیون 5 نقطهای رسم میشوند. این روش که در آزمایشگاه طراحی شده است، میتواند برای اندازهگیری غلظت و آنالیز دادهها در آزمایشگاههای آب و فاضلاب، محیط زیست، نفت، پتروشیمی و غیره مورد استفاده قرار گیرد. دقت بالای روش (میکروگرم بر لیتر) از ویژگیهای اصلی این روش است. در اینجا، روش طراحی و مزایای این روش با نمودارها و جداول ارائه شده است. | ||
| کلیدواژهها [English] | ||
| دقت اندازهگیری, روش تغلیظ, شبکه توزیع آب, تکنیک فضای فوقانی, آشکارساز جذب الکترون (GC-ECD) | ||
| مراجع | ||
|
[1] K. Shayesteh, P. Abbasi, V. Vahidfard and M. Shahedi Asl, Simultaneous removal of nickel and cadmium during the cold purification of zinc sulfate solution, Arab. J. Sci. Eng. 45(2) (2020) 587–598. DOI: 10.1007/s13369-019-04320-9.
[2] G.K. Imanzadeh, M.R. Zamanloo, H. Eskandari and K. Shayesteh, A new ring bromination method for aromatic compounds under solvent-free conditions with NBS/Al2O3, J. Chem. Res. 2006(3) (2006) 151–153. DOI: 10.3184/030823406776330657.
[3] K. Shayesteh, J. Moghaddas, M. Haghighi and H. Eskandari, Development of a monitoring method for oxidative coupling reaction of 2-naphthol in solid state, Asian J. Chem. 22(3) (2010) 2106.
[4] Z. Emamgholiloo, K. Shayesteh and F. Zahmati, Synthesis of WL. nZVI/GAC adsorbent green for chromium removal from aqueous solutions (Characterization, kinetics, isotherms, and thermodynamics), Chem. Eng. Sci. 297 (2024) 120209. DOI: 10.1016/j.ces.2024.120209.
[5] K. Shayesteh, M. Khojasteh, N. Shayesteh, M.J. Khani, F. Zahmati and V. Vahidfard, The effect of mineral hot water springs on the quality of the river based on toxicity indicators (case study: the effect of Ghaynarjeh Nir hot spring on the Balkhlichai river), J. Res. Environ. Health. 9(2) (2023) 146–159. DOI: 10.22038/jreh.2023.66395.1524.
[6] M. Abdollahpour and K. Shayesteh, Application of response surface methodology (RSM) for modeling and optimizing coagulation process for the removal of bromide ions, J. Water Wastewater. 27(5) (2016) 64–72.
[7] L.A. Wallace, Total exposure assessment methodology (TEAM) study: Summary and analysis, (EPA/600/6-87/002a), Vol. 1. U.S. Environmental Protection Agency, Washington, DC (1987a), NTIS # PB 88-100060, 38 54.https://d1wqtxts1xzle7. cloudfront.net/67363945/2000UC5T-libre.
[8] L.A. Wallace, Human exposure and body burden for chloroform and other trihalomethanes, Crit. Rev. Environ. Sci. Technol. 27 (1997b) 113–194. DOI: 10.1080/10643389.1997.10737059.
[9] U.S. Environmental Protection Agency (USEPA), National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts rule: final rule, Fed. Regist. 71(2) (2006) 388–493. https://www.govinfo.gov/content/pkg/FR-2006-01-04/pdf/06-3.
[10] K.L.A. de Oliveira, G.M. Bousada, C.I. Cerceau, A.F. de Oliveira and R.P. Lopes M., Efficient THM quantification in drinking water for minimally-equipped water treatment plants labs, Spectrochim. Acta A Mol. Biomol. Spectrosc. 321 (2024) 124739. DOI: 10.1016/j.saa.2024.124739
[11] A. Mohammadpour, Z. Emadi, E. Berizi and A. Kazemi, THMs in chlorinated drinking water: seasonal variations and health risk assessment in southern Iran, Groundw. Sustain. Dev. 27 (2024) 101342. DOI: 10.1016/j.gsd.2024.101342.
[12] A. Torabian, An evaluation of THMs in drinking water and a method of its removal, Iran. J. Public Health 27(1–2) (1998) 35–42. DOI:10.1093/chromsci/30.12.478.
[13] A.A. Babaei, L. Atari, M. Ahmadi Moghadam, N. Alavi & K. Ahmadi Angali, Determination of trihalomethanes concentration in Ahvaz water distribution network in 2011, Jentashapir Journal of Cell & Molecular Biology, 3(4) (2012): e94052. http://journals.ajums.ac.ir/jentashapir.
[14] N. Jafari, A. Behnami, F. Ghayurd, A. Soleimani, A. Mohammadi, M. Mojtaba Pourakbar and A. Abdolahnejad, Analysis of THM formation potential in drinking water networks: effects of network age, health risks, and seasonal variations in northwest Iran, Heliyon 10(14) (2024) e34563. DOI: 10.1016/j.heliyon.2024.e34563.
[15] L.R. Kalankesh, M.A. Zazouli, H. Susanto and E. Babanezhad, Variability of TOC and DBPs (THMs and HAA5) in drinking water during drought season: North Iran case study, Environ. Technol. 42(1) (2021) 100–113. DOI: 10.1080/09593330.2019.1621952.
[16] K.M.S. Kaarsholm, A. Kokkoli, E. Keliri, P.D. Mines, M.G. Antoniou, M.H. Jakobsen and H.R. Andersen, Quantification of hypochlorite in water using the nutritional food additive pyridoxamine, Water 13(24) (2021) 3616. DOI: 10.5194/jsss-6-381-2017.
[17] J.E. Lovelock and S.R. Lipsky, Electron affinity spectroscopy – a new method for identifying functional groups in compounds separated by gas chromatography, J. Am. Chem. Soc. 82 (1960) 431–433.DOI: 10.1021/ja01487a045
[18] R.J. Maggs, P.L. Joynes, A.J. Davies and J.E. Lovelock, Electron capture detector: new mode of operation, Anal. Chem. 43 (1971) 1966–1971.https://doi.org/10.1021 /ac 60308 a014.
[19] W.E. Wentworth, E.D. D’Sa, H. Cai and S. Stearns, Environmental applications of the pulsed-discharge electron capture detector, J. Chromatogr. Sci. 30 (1992) 478–485.DOI: 10.1093/chromsci/30.12.478.
[20] E. Bunert, A.T. Kirk, J. Oermann and S. Zimmermann, Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance, J. Sens. Sens. Syst. 6 (2017) 381–387. DOI: 10.5194/jsss-6-381-2017.
[21] A. Sandoval-González, N.A. López-García, E. Figueroa-Hernandez and J. Cárdenas-Mijangos, Advances in analytical methods for the monitoring of chemical pollutants in industrial effluent water. In M.P. Shah (ed.), Microbial Remediation of Hazardous Chemicals from Water & Wastewater Treatment Plant, Springer, Cham (2024) 20–49.https://doi.org/10.1007/978-3-031-62898-6_17.
[22] D. Svetlizky, H. Kazimierczak, B. Ovadia, A. Sharoni and N. Eliaz, Electrochemical processing and thermal properties of functional core/multi-shell ZnAl/Ni/NiP microparticles, Materials 14 (2021) 834. DOI: 10.3390/ma14040834.
[23]A.J. Bard, L.R. Faulkner and H.S. White, Electrochemical Methods: Fundamentals and Applications, 3 rd Edition, Wiley, Transition Metal Chemistry 48(6) (2023).DOI:10.1007/s 11243-023-00555-6.
[24] D.K. Singh, M. Pradhan and A. Materny, Modern Techniques of Spectroscopy: Basics, Instrumentation, and Applications, Springer, Singapore (2021) 30–110. DOI: 10.1007 /978-981-33-6084-6.
[25] M. Passos and M.L. Saraiva, Detection in UV–visible spectrophotometry: detectors, detection systems, and detection strategies, Measure. 135 (2019) 896–904. DOI: 10.1016/j.measurement.2018.11.066.
[26] J. Mátyási, G. Nyerges and J. Balla, Increasing flame ionization detector response by silylation: the effective carbon number of carboxylic acids, Period. Polytech. Chem. Eng. 67(4) (2023) 565–572. https://doi.org/ 10.3311/PPch.22827.
[27] K. Wang, S. Kang, F. Li, X. Wang, Y. Xiao, J. Wang and H. Xu, Relationship between fruit density and physicochemical properties and bioactive composition of mulberry at harvest, J. Food Compos. Anal. 106 (2022) 104322. DOI: 10.1016/j.jfca.2022.104322.
[28] G. Ntsomboh-Ntsefong, G.F. Ngando-Ebongue, J.E. Maho-Yalen, E. Youmbi, J.M. Bell, H. Ngalle-Bille, K. Tabi-Mbi, B.C. Likeng-Li-Ngue and A. Nsimi-Mva, GC-FID method development and validation parameters for analysis of palm oil fatty acids composition, J. Res. Plant Sci. 2(3) (2014) 53–66.DOI: 10.12691/plant-2-3-2.
[29] S. Rasheed, I. Hashmi, Q. Zhou, et al., Central composite rotatable design for optimization of THM extraction and detection through gas chromatography: a case study, Int. J. Environ. Sci. Technol. 20 (2023) 1185–1198. DOI: 10.1007/s13762-022-04522-2.
[30] J.P. Swinley and P. De Coning, A Practical Guide to Gas Analysis by Gas Chromatography. Elsevier (2023) 80–98. https://search.library.uq.edu.au/permalink/61UQ_INST/l14uft/alma991014094127703131.
[31] Y. Zhu, T. Ariga, K. Nakano and Y. Shikamori, Trends and advances in inductively coupled plasma tandem quadruple mass spectrometry (ICP-QMS/QMS) with reaction cell, At. Spectrosc. 42 (2021) 299–309. DOI: 10.46770/AS. 2021.42.299.
[32] G.A. Reineccius and M.C. Qian, Gas chromatography. In B.P. Ismail and S.S. Nielsen (eds), Nielsen’s Food Analysis. Springer, Cham (2024).https://doi.org/ 10.1007/978-3-031-50643-7_14.
[33] A. Bidari, M.R. Ganjali, P. Norouzi, M.R. Milani Hosseini and Y. Assadi, Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid–liquid microextraction, Food Chem. 126 (2011) 1840–1844. DOI: 10.1016/j. foodchem.2010.11.142.
[34] A. Cristián, C.R. Ferretti, M. Apesteguía and J.I. di Cosimo, Development and validation of a gas chromatography method for the simultaneous determination of multicomponents during monoglyceride synthesis by glycerolysis of methyl oleate, J. Argent. Chem. Soc. 98 (2011) 16–28. https:// www.aqa.org.ar/images/anales/pdf98/98art3.pdf.
[35] N.N. Godswill, N.E.Georges Frank, M.Y.Josian Edson, Y. E., B. J. Martin, N.B. Hermine, T.M. Kingsley, L.L.N. Benoit Constant, and N.M. Armand,GC-FIDmethod development and validationparameters for analysis of palm oil (Elaeis guineensis Jacq.) fatty acids composition, Research in Plant Sciences 2(3) (2014): 53-66. doi: 10.12691/plant-2-3-2. DOI: 10.12691/plant-2-3-2.
| ||
|
آمار تعداد مشاهده مقاله: 93 تعداد دریافت فایل اصل مقاله: 113 |
||