تعداد نشریات | 41 |
تعداد شمارهها | 1,114 |
تعداد مقالات | 9,532 |
تعداد مشاهده مقاله | 17,201,989 |
تعداد دریافت فایل اصل مقاله | 12,038,781 |
Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms | ||
Control and Optimization in Applied Mathematics | ||
مقاله 1، دوره 1، شماره 1، تیر 2016، صفحه 1-19 اصل مقاله (939.51 K) | ||
نوع مقاله: Research Article | ||
نویسندگان | ||
Akbar Hashemi Borzabadi* 1؛ Manije Hasanabadi2؛ Navid Sadjadi3 | ||
1damghan university | ||
2Damghan University | ||
3University of Valladolid | ||
چکیده | ||
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using a numerical method. To do that, a modified version of two famous evolutionary genetic algorithm (GA) and particle swarm optimization (PSO) to obtain Pareto optimal solutions of the problem is employed. Numerical examples are presented to show the efficiency of the given approach. | ||
کلیدواژهها | ||
Multi-objective optimal control problem؛ Pareto solution؛ Evolutionary algorithm؛ Discretization؛ Approximation | ||
عنوان مقاله [English] | ||
جواب های بهینه ی پارتوی مسائل کنترل بهینه چند هدفه به کمک الگوریتم های تکاملی | ||
نویسندگان [English] | ||
اکبر هاشمی برزآبادی1؛ منیژه حسن آبادی2؛ نوید سجادی3 | ||
1دانشگاه دامغان | ||
2دانشگاه دامغان | ||
3دانشگاه والادولید | ||
چکیده [English] | ||
در این مقاله روشی برای یافتن زوج بهینه کنترل و وضعیت، جهت مسائل کنترل بهینه چندهدفه، روشی بر پایه الگوریتمهای تکاملی معرفی شده است. در این روش ابتدا شکل گسستهای از فضای زمان-کنترل ارائه شده، سپس از فضای زمان-کنترل گسسته شده، توابع کنترل و وضعیت تکهای خطی با استفاده از معادلات سیستم ساخته میشوند. دو روش تکاملی ژنتیک و ازدحام ذرات برای یافتن جوابهای بهینه پارتو مسئله به کار میرود. جوابهای عددی برای نشان دادن کارایی روش ارائه شدهاند. | ||
کلیدواژهها [English] | ||
مسئله کنترل بهینه چندهدفه, جواب پارتو, الگوریتم تکاملی, گسستهسازی, تقریب | ||
مراجع | ||
[1] Agnieszka B. M., Delfim F. M. T. (2007) " Nonessential functionals in multi-objective optimal control problems ", Proceedings of the Estonian Academy of Sciences, series Physics and Mathematics and Chemistry, 56, 336-346.
[2] Ahmad I., Sharma S. (2010) " Sufficiency and duality for multi-objective variational control problems with generalized $(F,alpha ,rho ,theta )$-V-convexity ", Nonlinear Analysis, 72, 2564-2579.
[3] Andersson J. (2000) " A survey of multi-objective optimization in engineering design ", Technical report LiTH-IKP-R-1097, Department of Mechanical Engineering, Linkِping University, Linkِping, Sweden.
[4] Bonnel H., YalçnKaya C. (2010) " Optimization over the efficient set of multi-objective convex optimal control problems", Journal of Optimization: Theory and Applications, 147, 93-112.
[5] Coello C. A., Lechuga M.S. (2002) " MOPSO: A proposal for multiple objective particle swarm optimization ", In Proceeding Congress on Evolutionary Computation (CEC'2002), Honolulu, HI., 1, 1051-1056.
[6] Dahleh M. A., Diaz-Bobillo I. J. (1995) " Control of uncertain systems: A linear programming approach ", Englewood Cliffs, NJ.: Prentice-Hall.
[7] Deb K., Pratap A., Agarwal S., Meyarivan T. (2002) " A fast and elitist multi-objective genetic algorithm: NSGA-II ", Transactions on Evolutionary Computation, 6.
[8] Eberhart R.C., Simpson P., Dobbins R. (1996) " Computational intelligence PC tools ", Academic Press Professional, San Diego, CA., 212-226.
[9] El-Kady M. M., Salim M. S., El-Sagheer A. M. (2003) " Numerical treatment of multi-objective optimal control problems ", Automatica, 39, 47--55.
[10] Gambier A., Bareddin E. (2007) " Multi-objective optimal control: An overview ", IEEE Conference on Control Applications, CCA., Singapore, 170-175.
[11] Gambier A., Jipp M. (2011) " Multi-objective optimal control: An introduction ", Proceedings of the 8th Asian Control Conference (ASCC'11), Kaohsiung, Taiwan, 15-18.
[12] Guzma'n M. A., Delgado A., Carvalho J. D. (2010) "A novel multi-objective optimization algorithm based On bacterial chemotaxis ", Engineering Applications of Artificial Intelligence, 23, 292-301.
[13] Hiroyasu T., Miki M., Kamiura J., Watanabe S., Hiroyasu H. (2002) " Multi-objective optimization of Diesel engine emissions and fuel economy using genetic algorithms and phenomenological model ", Society of Automotive Engineer Inc., 1-12.
[14] Hu, Z., Salcudean S. E., Loewen D. (1998) "A Numerical solution of multi-objective control problems ", Journal of Optimal Control Applications and Methods, 19, 411-422.
[15] Kennedy J., Eberhart R. C. (1995) " Particle swarm optimization ", Proceedings of 4th IEEE International Conference on Neural Networks. Journal of IEEE, Piscataway, NJ., 1942-1948.
[16] Knowles J. D., Corne D.W. (2000) " Approximating the non-dominated front using the Pareto archived evolution strategy ", Journal of Evolutionary Computation, 8, 149-172.
[17] Kumar A., Vladimirsky A. (2010) " An efficient method for multi-objective optimal control and optimal control subject to integral constraints ", Journal of Computational Mathematics, 28, 517-551.
[18] Kundu D., Suresh K., Ghosh S., Das S., Panigrahi B. K. (2011) " Multi-objective optimization with artificial weed colonies ", Journal of Information Science, 181, 2441-2454.
[19] Lin J. G. (1976) " Multi-objective problems: Pareto-optimal solutions by method of proper equality constraints ", IEEE Transactions on Automatic Control, 21, 641-650.
[20] Liu G. P., Yang J. B., Whidborne J. F. (2003) " Multi-objective optimization and control ", Research Studies Press Ltd., Exeter.
[21] Lozovanu D., Pickl S. (2007) " Algorithms for solving multi-objective discrete control problems and dynamic c-games on networks ", Journal of Discrete Applied Mathematics, 155, 1846-1857.
[22] Maity k., Maiti M. (2005) " Numerical approach of multi-objective optimal control problem in imprecise environment ", Fuzzy Optimization and Decision Making, 4, 313-330.
[23] Milano F., Caٌizares C. A., Invernizzi M. (2003) " Multi-objective optimization for pricing system security in electricity markets ", IEEE Transactions on Power Systems,18, 596-604.
[24] Rangan S., Poolla K. (1997) " Weighted optimization for multi-objective full information control problems ", Journal of Systems and Control Letters, 31, 207-213.
[25] Shi Y., Eberhart R. C. (1998) " A modified particle swarm optimizer ", in Proceedings of IEEE International Conference on Evolutionary Computation, Piscataway, NJ., 69-73.
[26] Srinivas N., Deb K. (1995) " Multi objective function optimization using non-dominated sorting genetic algorithms ", Journal of Evolutionary Computation, 2, 221-248.
[27] Wajge R. M., Gupta S. K. (1994) " Multi-objective dynamic optimization of a nonvaporizing nylon 6 batch reactor ", Polymer Engineering and Science, 34, 1161-1174.
[28] Wang N. F., Tai K. (2010) " Target matching problems and an adaptive constraint strategy for multi-objective design optimization using genetic algorithms ", Journal of Computers Structures, 88, 1064- 1076.
[29] Zarei H., Kamyad A. V., Effati S. (2010) " Multi-objective optimal control of HIV dynamics ", Journal of Mathematical Problems in Engineering, 1-15.
[30] Zitzler E., Deb K., Thiele L. (2000) " Comparison of multi-objective evolutionary algorithms: Empirical results ", Journal of Evolutionary Computation, 8, 173-195.
[31] Zitzler E., Laumanns M., Thiele L. (2001) " SPEA2: Improving the strength Pareto evolutionary algorithm ", Zurich, Switzerland: Swiss Federal Institute Technology.
[32] Zitzler E., Thiele L. (1999) " Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach ", IEEE Transactions on Evolutionary Computation, 3, 257-271. | ||
آمار تعداد مشاهده مقاله: 3,577 تعداد دریافت فایل اصل مقاله: 3,670 |