| تعداد نشریات | 48 |
| تعداد شمارهها | 1,235 |
| تعداد مقالات | 10,619 |
| تعداد مشاهده مقاله | 21,493,934 |
| تعداد دریافت فایل اصل مقاله | 14,466,555 |
Surfactant-assisted synthesis of barium hexaferrite nanoparticles by hydrothermal method | ||
| Iranian chemical communication | ||
| مقاله 24، دوره 4، Issue 3, pp. 236-358, Serial No. 12، مهر 2016، صفحه 347-358 اصل مقاله (277.41 K) | ||
| نوع مقاله: Original Research Article | ||
| نویسندگان | ||
| Kamellia Nejati1؛ Shabnam Alizade2؛ Sara Samuey3؛ Zolfaghar Rezvani* 3 | ||
| 1Department of Chemistry, Payame Noor University, P.O.BOX 19395-3697 Tehran, I.R. of Iran | ||
| 2Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz | ||
| 3Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran | ||
| چکیده | ||
| In the present work, the synthesis of Barium hexaferrite (BaFe12O19) nanoparticles in the presence of a large excess amount of OH− anions by the hydrothermal method in the presence and absence of surfactants such as Sodium dodecyl benzene sulfonate and Triton X-114 was reported. The optimized temperature in the absence of surfactant was determined (200 °C) and then Barium hexaferrite nanoparticles were synthesized by assistance of surfactants at this temperature. In this way, it was confirmed that the secondary re-crystallization can be totally suppressed with the use of surfactant and addition of surfactant leads to the synthesis of uniform and ultrafine nanoparticles with excellent superparamagnetic properties. Barium hexaferite nanoparticles have a disc-like shape. The structure, morphology and magnetic properties of samples were characterized and investigated by Powder X-ray Diffraction (PXRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) techniques. | ||
| کلیدواژهها | ||
| Barium hexaferrite؛ hydrothermal؛ surfactant؛ Sodium dodecyl benzene sulfonate | ||
| مراجع | ||
|
[1] R. Sharma, R.C. Agarwala, V.A. Garwala, Materials Letters, 2008, 62, 2233–2236.
[2] F.Z. Song, X.Q. Shen, J. Xiang, Y.W. Zhu, J Alloys Compd., 2010, 507, 297–301.
[3] D. Bahadur, S. Rajakumar, A. Kumar, J. Chem. Sci., 2006, 118, 15–21.
[4] Q. Mohsen, Am. J Appl. Sci., 2010,
7, 914-921.
[5] C.R. Gong, G.L. Fan, C.L. Song, Trans Tianjin Univ., 2007, 13, 117–120.
[6] T.S. Candac, E.E. Carpenter, C.J. O’Connor, V.T. John, S. Li, IEEE Trans Magn., 1998, 34, 1111–1113.
[7] V. Pillai, P. Kumar, M.J. Hou, P. Ayyub, D.O. Shah, Adv Coll Int Sci., 1995, 55, 241–269.
[8] Y. Li, Q. Wang, H. Yang, Curr. Appl. Phys., 2009, 9, 1375–1380.
[9] M.J. Iqbal, A. Barkat-ul, Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol., 2009, 164, 6–11.
[10] N.J. Shirtcliffe, S. Thompson, E.S. O’Keefe, S. Appleton, C.C. Perry, Mater. Res. Bull., 2007, 42, 281–287.
[11] Y. Liu, M.G.B. Drew, J. Wang, M. Zhang, J. Magn. Magn. Mater., 2010, 322, 366–374.
[12] M.M. Rashad, M. Radwan, M.M. Hessien, J. Alloys Compd., 2008, 453, 304–308.
[13] L. You, L. Qiao, J. Zheng, M. Jiang, L. Jiang, J. Sheng, J. Rare Earths., 2008, 26, 81–84.
[14] K.S. Martirosyan, E. Galstyan, S.M. Hossain, Y.J. Wang, D. Litvinov, Mater. Sci. Eng. B., 2011, 176, 8–13.
[15] M.H. Kim, D.S. Jung, Y.C. Kang,
J.H. Choi, Ceram. Int., 2009, 35, 1933–
1937.
[16] S. Singhal, A.N. Garg, K. Chandra, J. Magn. Magn. Mater., 2005, 285, 193–198.
[17] J. Yu, S. Tang, L. Zhai, Y. Shi, Y. Du, Physica B., 2009, 404, 4253–4256.
[18] L. Du, Y.C. Du, Y. Li, J.Y. Wang, C. Wang, X.H. Wang, P. Xu, X.J. Han, J. Phys. Chem C., 2010, 114,19600–19606.
[19] D. Primc1, D. Makovec1, D. Lisjak, M. Drofenik, Nanotechnology, 2009, 20, 315605-315613.
[20] K. Sadhana, K. Praveena, S. Matteppanavar, B. Angadi, Appl. Nanosci., 2012, 2, 247–252.
[21] T. Wejrzanowski, R. Pielaszek, A. Opalin´ ska, H. Matysiak, W. Lojkowski, K.J. Kurzydlowski, Appl. Surf. Sci., 2006, 253, 204-208.[22] R. Pielaszek, Analytical expression for diffraction line profile for polydispersive powders Applied Crystallography Proceedings of the XIX Conference., 2006, 43-50.
[23] B. Shirk, W. Buessem, IEEE Trans Magn.1971, 7,659–663.
[24] M. Pal, S. Bid, S.K. Pradhan, B.K. Nath, D. Das, D. Chakravorty, J. Magn Magn Mater., 2004, 269,42–47.
[25] J. Coey, Phys. Rev. Lett., 1971, 27, 1140-1142.
[26] R. Kadama, A. Berkowitz, E. McNiff, S. Foner, Phys. Rev. Lett., 1996,77, 394-397.
[27] A. Mali, A. Ataie, J Alloys Compd., 2005, 399, 245–50.
[28] J. Huang, H. Zhang, W. Li, Mater Res Bull., 2003, 38, 149–59.
[29] A. Mali, A. Ataie, Ceram Int., 2004, 30, 1979–83.
[30] A. Mali, A. Ataie, Scripta Mater., 2005, 53, 1065–1070.
[31] S. Li, IEEE Trans Magn., 1986, 22,14–18.
[32] E. Stoner, E. Wohlfarth, J. Math. Phys. Sci., 1948, 240, 74-78.
[33] J. Went, G. Rathenau, E. Gorter, G. Van Oosterhout, Philips Tech. Rev., 1952,
13, 194–208.
[34] O. Kubo, T. Ido, H. Yokoyama, IEEE Trans. Magn., 1982, 18, 1122–1124. | ||
|
آمار تعداد مشاهده مقاله: 2,562 تعداد دریافت فایل اصل مقاله: 2,153 |
||