تعداد نشریات | 41 |
تعداد شمارهها | 1,101 |
تعداد مقالات | 9,444 |
تعداد مشاهده مقاله | 17,016,391 |
تعداد دریافت فایل اصل مقاله | 11,935,152 |
Optimization of Lead-Selective Membrane Electrode Using Central Composite Experimental Design, and Study of Its Behavior with Electrochemical Impedance Spectroscopy | ||
Iranian Journal of Analytical Chemistry | ||
مقاله 3، دوره 3، شماره 2، آذر 2016، صفحه 96-104 اصل مقاله (1.1 M) | ||
نوع مقاله: Full research article | ||
نویسندگان | ||
Mohammad Mazloum-Ardakani* 1؛ Azimeh Mandegari2؛ Alireza Khoshroo Khoshroo1؛ Saeed Masoum3؛ Hadi Kargar2 | ||
1Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran | ||
2Departmentof Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran | ||
3Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran | ||
چکیده | ||
In this work, response surface methodology in conjunction with central composite design for modeling and optimization of the influence of some process variables (polyvinyl chloride (F1), ionophore (F2), additive (F3) and plasticizer (F4) amounts), on the performance of polyvinyl chloride membrane lead (ІІ) ion-selective electrode is discussed. The slope of 29.1 ± 0.1 mV at the optimal amounts of polyvinyl chloride (0.0283 g), ionophore (0.0074 g), additive (0.002 g) and plasticizer (0.060 g) has been achieved. The electrode exhibited a linear potential response to lead (II) in the concentration range of 1.0 × 10-5 mol L-1 to 1.0 × 10-1 mol L-1 over pH range of 3.0 - 5.5. Greatly, the alternating current impedance technique was applied to investigate the response mechanism of the electrode. The results were obtained from electrochemical impedance spectroscopy shows a linear concentrations range of 1.0 × 10-6 mol L-1 to 1.0×10-1 mol L-1 and in comparison with potentiometry, the pH range increased to 2.5 − 6.0. | ||
کلیدواژهها | ||
Ion-Selective Electrode؛ Polyvinyl Chloride Membrane؛ Ionophore؛ Response Surface Methodology؛ Central Composite Design | ||
عنوان مقاله [English] | ||
بهینه سازی الکترود یون گزین سرب با استفاده از روش طرح ترکیب مرکزی و مطالعه رفتار آن با اسپکتروسکوپی امپدانس الکتروشیمیایی | ||
نویسندگان [English] | ||
محمد مظلوم اردکانی1؛ عظیمه ماندگاری2؛ علیرضا خوشرو1؛ سعید معصوم3؛ هادی کارگر2 | ||
1گروه شیمی، دانشکده علوم پایه، دانشگاه یزد، یزد، ایران | ||
2بخش شیمی، دانشگاه پیام نور، صندوق پستی 3697-19395، تهران، ایران | ||
3گروه شیمی تجزیه، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران | ||
چکیده [English] | ||
در این کار روش سطح پاسخ همراه با روش طرح ترکیب مرکزی برای شبیهسازی و بهینهسازی اثر برخی متغیرها (مقادیر پلیوینیلکلرید، یونوفر، افزودنی و نرمکننده) بر عملکرد الکترود یونگزین سرب استفاده شده است. شیب 1/29 میلیولت در مقادیر بهینه از پلیوینیلکلرید (0283/0 گرم)، یونوفر(0074/0 گرم)، افزودنی (002/0 گرم) و نرم کننده (060/0 گرم) به دست آمد. محدوده خطی غلظت 1-10×0/1-5-10×0/1 مولار با روش پتانسیومتری برای سرب بدست آمد. تکنیک اسپکتروسکوپی امپدانس الکتروشیمیایی برای ارزیابی مکانیسم پاسخ الکترود بکار برده شد. نتایج بدست آمده از اسپکتروسکوپی امپدانس الکتروشیمیایی محدوده خطی غلظتی از 6-10× 0/1 تا 1-10×0/1 مولار را نشان میدهد. همچنین در مقایسه با روش پتانسیومتری محدوده pH بدست آمده از 3 تا 5/5 به مقدار 5/2 تا 0/6 افزایش پیدا کرد. | ||
کلیدواژهها [English] | ||
الکترود یونگزین, غشا پلیوینیلکلرید, یونوفر, روش سطح پاسخ, طرح ترکیب مرکزی | ||
مراجع | ||
[1] L. Philip, L. Iyengar and C. Venkobachar, ORIGINAL PAPERS Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa, J. Ind. Microbiol. Biotechnol. 25 (2000) 1–7.
[2] I.D. Brouwer, A. De Bruin, O.B. Dirks and J. Hautvast, Unsuitability of World Health Organisation guidelines for fluoride concentrations in drinking water in Senegal, Lancet 331 (1988) 223–225. [3] M.H. Mashhadizadeh, H. Khani, A. Shockravi and M. Sadeghpour, Determination of ultratrace levels of lead (II) in water samples using a modified carbon paste electrode based on a new podand, Mater. Sci. Eng. C. 31 (2011) 1674–1680.
[4] E. Bakker and E. Pretsch, Potentiometric sensors for trace-level analysis, TrAC Trends Anal. Chem. 24 (2005) 199–207.
[5] A. Yari, S. Azizi and A. Kakanejadifard, An electrochemical Ni (II)-selective sensorbased on a newly synthesized dioxime derivative as a neutral ionophore, Sens. Actuators B Chem. 119 (2006) 167–173.
[6] E. Bakker, E. Pretsch and P. Bühlmann, Selectivity of potentiometric ion sensors, Anal. Chem. 72 (2000) 1127–1133.
[7] L. Wang, D. Yang, D. Lamb, Z. Chen, P.J. Lesniewski, M. Megharaj and R. Naidu, Application of mathematical models and genetic algorithm to simulate the response characteristics of an ion selective electrode array for system recalibration, Chemom. Intell. Lab. Syst. 144 (2015) 24–30.
[8] M. Mazloum Ardakani, M. Salavati-Niasari and M. Jamshidpoor, Selective nitrate poly (vinylchloride) membrane electrode based on bis (2-hydroxyacetophenone) ethylenediimine vanadyl (IV), Sens. Actuators B Chem. 101 (2004) 302–307.
[9] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar and L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta. 76 (2008) 965–977.
[10] M.M.D. Zulkali, A.L. Ahmad and N.H. Norulakmal, Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution, Bioresour. Technol. 97 (2006) 21–25.
[11] I. Mangili, M. Lasagni, K. Huang and A.I. Isayev, Modeling and optimization of ultrasonic devulcanization using the response surface methodology based on central composite face-centered design, Chemom. Intell. Lab. Syst. 144 (2015) 1–10.
[12] H. Abdolmohammad-Zadeh, A. Naseri, M. Galeh-Assadi and S. Shabkhizan, Optimization of solid-phase extraction based on a new sol-gel material using a response surface methodology for the determination of copper in water samples by flame atomic absorption spectrometry, Int. J. Environ. Anal. Chem. 93 (2013) 279–297.
[13] M. Mazloum-Ardakani, A.D. Manshadi, M. Bagherzadeh and H. Kargar, Impedimetric and Potentiometric Investigation of a Sulfate Anion-Selective Electrode: Experiment and Simulation, Anal. Chem. 84 (2012) 2614– 2621. [14] E. Barsoukov and J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications, John Wiley & Sons (2005).
[15] J.R. Macdonald, Impedance spectroscopy, Ann. Biomed. Eng. 20 (1992) 289–305.
[16] M. Mazloum-Ardakani, L. Hosseinzadeh and A. Khoshroo, Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerenefunctionalized carbon nanotubes/ionic liquid, J. Electroanal. Chem. 757 (2015) 58–64.
[17] M. Mazloum-Ardakani, L. Hosseinzadeh and A. Khoshroo, Ultrasensitive Electrochemical Immunosensor for Detection of Tumor Necrosis Factor-α Based on Functionalized MWCNT-Gold Nanoparticle/Ionic Liquid Nanocomposite, Electroanalysis. 27 (2015) 2518–2526.
[18] J.T.S. Irvine, D.C. Sinclair and A.R. West, Electroceramics: characterization by impedance spectroscopy, Adv. Mater. 2 (1990) 132–138.
[19] S. Frka, A. Nelson and Z. Kozarac, Use of electrochemical impedance spectroscopy to characterise the physical properties of ex situ reconstructed sea surface microlayer, Int. J. Environ. Anal. Chem. 86 (2006) 325–335.
[20] M. Mazloum-Ardakani and A. Khoshroo, Enhanced performance of dye-sensitized solar cells with dual-function coadsorbent: reducing the surface concentration of dye-iodine complexes concomitant with attenuated charge recombination, Phys. Chem. Chem. Phys. 17 (2015) 22985–22990.
[21] H.K. Fun, H. Kargar, R. Kia and A. Jamshidvand, 6, 6′-Diethoxy-2, 2′-[2, 2dimethylpropane-1, 3-diylbis (nitrilomethylidyne)] diphenol, Acta Crystallogr. Sect. E Struct. Reports Online. 65 (2009) o707–o708.
[22] J.E. Randles, A cathode ray polarograph. Part II.—The current-voltage curves, Trans, Faraday Soc. 44 (1948) 327–338.
[23] S. Wold, A. Ruhe, H. Wold and I.I.I. Dunn WJ, The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses, SIAM J. Sci. Stat. Comput. 5 (1984) 735–743.
[24] E. Bakker, P. Bühlmann and E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 97 (1997) 3083–3132.
[25] M. Mazloum-Ardakani, A. Khoshroo and L. Hosseinzadeh, Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite, Sens. Actuators B Chem. 214 (2015) 132–137. [26] M. Ghaedi, M. Montazerozohori, Z. Andikaey, A. Shokrollahi, S. Khodadoust, M. Behfar and S. Sharifi, Fabrication of Pb 2+ Ion Selective Electrode Based on 1-((3-((2Hydroxynaphthalen-1-yl) Methyleneamino)2, 2-Dimethylpropylimino) Methyl) Naphthalen-2-ol as New Neutral Ionophore, Int. J. Electrochem. Sci. 6 (2011) 4127–4140.
[27] J. Guo, Y. Chai, R. Yuan, Z. Song and Z. Zou, Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: Application to lead content determination in environmental samples, Sens. Actuators B Chem. 155 (2011) 639– 645. | ||
آمار تعداد مشاهده مقاله: 1,770 تعداد دریافت فایل اصل مقاله: 1,207 |