
تعداد نشریات | 41 |
تعداد شمارهها | 1,182 |
تعداد مقالات | 10,167 |
تعداد مشاهده مقاله | 19,109,864 |
تعداد دریافت فایل اصل مقاله | 13,246,745 |
The Control Parametrization Enhancing Technique for Multi-Objective Optimal Control of HIV Dynamic | ||
Control and Optimization in Applied Mathematics | ||
مقاله 1، دوره 1، شماره 2، دی 2016، صفحه 1-21 اصل مقاله (706.95 K) | ||
نوع مقاله: Research Article | ||
نویسنده | ||
Hassan Zarei* | ||
Department of Mathematic, Payame Noor University, Tehran, Iran | ||
چکیده | ||
In this paper, a computational approach is adopted for solving a multi-objective optimal control problem (MOOCP) formulation of optimal drug scheduling in human immunodeficiency (HIV) virus infected by individuals. The MOOCP, which uses a mathematical model of HIV infection, has some incompatible objectives. The objectives are maximizing the survival time of patients, the level of D4+ T-cells and the level of cytotoxic T-lymphocytes (CTLs), and minimizing the viral load and the drug costs. In this approach the fuzzy goals described by the linear membership functions, are incorporated for the objectives and the optimal solution is investigated by maximizing the degree of attainment of the aggregated fuzzy goals resulting a fuzzy goal optimal control problem (FGOCP). Using the minimum operator for aggregation of fuzzy goals, the FGOCP is converted into a constrained optimal control problem (OCP) in canonical form. The control parametrization enhancing technique (CPET) is used for approximating the OCP by an optimal parameter selection problem, with the final goal of implementing continuous and interrupted (structured treatment interruptions, STI) combinations of reverse transcriptase inhibitor (RTI) and protease inhibitor (PI) drug efficacies. Efficiency of the proposed method is confirmed by numerical simulations. | ||
کلیدواژهها | ||
Multi-objective problem؛ Optimal control؛ Fuzzy goal programming؛ Therapy optimization | ||
عنوان مقاله [English] | ||
کنترل بهینه چندهدفه دینامیک HIV به کمک تکنیک پارامتری کردن کنترل | ||
چکیده [English] | ||
دراین مقاله یک ایده محاسباتی برای حل یک مسئله فرمولبندی کنترل بهینه چندهدفه زمانبندی درمان بهینه در افراد آلوده به ویروس نقص ایمنی انسانی (HIV) مطرح میشود. مسئله کنترل بهینه چندهدفه که از یک مدل ریاضی عفونت HIV استفاده میکند، دارای چند هدف غیرهمسو است. مانند طول عمر بیمار، سطح سلولهای CD4+ و سطح CTL که باید بیشینه گردند، سطح ویروس و هزینههای دارو که باید کمینه گردند. دراین ایده آرمانهای فازی توصیف شده توسط توابع عضویت خطی، به اهداف اضافه شده و جواب بهینه با بیشینهسازی درجه حصول آرمانهای فازی انباشته شده، مورد جستجو قرار گرفته و یک مسئله کنترل بهینه آرمانی فازی نتیجه میشود. با استفاده از عملگر کمینه برای انبوهش آرمانهای فازی، مسئله کنترل بهینه آرمانی فازی تبدیل به یک مسئله کنترل بهینه محدود در فرم کانونی میشود. روش پارامتری کردن کنترل برای تقریب مسئله کنترل بهینه با یک مسئله انتخاب پارامتر بهینه با هدف نهایی پیادهسازی ترکیبات پیوسته و منقطع (STI) کارایی داروهای دسته PI و RTI به کارمیرود. کارایی ایده بیان شده توسط شبیهسازیهای عددی مورد تایید قرار میگیرد. | ||
کلیدواژهها [English] | ||
مسئله چندهدفه, کنترل بهینه, برنامهریزی آرمانی فازی, بهینهسازی درمان | ||
مراجع | ||
[1] Adams B. M., Banks H. T., Davidian M., Kwon H. D., Tran H. T., Wynne S. N. (2005). `` HIV dynamics: modeling, data analysis, and optimal treatment protocols ", Journal of Computational and Applied Mathematics, 184, 10-49.
[2] Banks H. T., Kwon H. D., Toivanen J. A., Tran H. T. (2006). `` A state-dependent Riccati equation-based estimator approach for HIV feedback control ", Optimal Control Applications and Methods, 27, 93-121.
[3] Bellman R. E., Zadeh L. A. (1970). `` Decision making in a fuzzy environment ", Management Science, 17, 41-64.
[4] Chen Y., Huang F., Yi N., Liu W. (2011). `` A Legendre-Galerkin spectral method for optimal control problems governed by Stokes equations ", Siam Journal of Numerical Analysis, 49, 1625-1648.
[5] Culshaw R., Ruan S., Spiteri R. J. (2004). `` Optimal HIV treatment by maximizing immune response ", Journal of Mathematical Biology, 48, 545-562.
[6] Das I., Dennis J. E. (1997). `` A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems ", Structural Optimization, 14, 63-69.
[7] Das I., Dennis J. E. (1998). `` Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems ", Siam Journal on Optimization, 8, 631-657.
[8] Duffin R. P., Tullis H. R. (2002). `` Mathematical models of the complete course of HIV infection and AIDS ", Journal of Theoretical Medicine, 4, 215-221.
[9] Elaiw A. M., Xia X. (2009). `` HIV dynamics: Analysis and robust multirate MPC-based treatment schedules ", Journal of Mathematical Analysis Applications, 359, 285-301.
[10] Elnagar G. N., Razzaghi M. (1997). `` A Chebyshev spectral method for the solution of nonlinear optimal control problems ", Applied Mathematical Modelling, 21, 255-260.
[11] Gonzalez S., Miele A. (1978). `` Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions ", Journal of Optimization Theory and Applications, 26, 395-425.
[12] Hadjiandreou M. M., Conejeros R., Wilson D. I. (2009). `` Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions ", Chemical Engineering Science, 64, 1600-1617.
[13] Jennings L. S., Fisher M. E., Teo K. L., Goh C. J. (2004). `` MISER3 optimal control software: Theory and user manual ”, University of Western Australia, Perth.
[14] Karrakchou J., Rachik M., Gourari S. (2006). `` Optimal control and infectiology: Application to an HIV/AIDS model ", Applied Mathematics and Computation, 177, 807-818.
[15] Kaya C. Y., Noakes J. L. (1996). `` Computations and time-optimal controls ", Optimal Control Applications Methods, 17, 171-185.
[16] Kirk D. E. (1970). `` Optimal control theory: An introduction ", Prentice Hall, New York, NY, USA.
[17] Kirschner D. E., Lenhart S., Serbin S. (1997). `` Optimal control of the chemotherapy of HIV ", Journal of Mathematical Biology, 35, 775-792.
[18] Landi A., Mazzoldi A., Andreoni C., Bianchi M., Cavallini A., Laurino M., Ricotti L., Luliano R., Matteoli B., Ceccherini N. (2008). `` Modelling and control of HIV dynamics ", Computer Methods and Programs in Biomedicine, 89, 162-168.
[19] Lee H. W. J., Teo K. L., Jennings L. S., Rehbock V. (1999). `` Control parametrization enhancing technique for optimal discrete-valued problems", Automatica, 35, 1401-1407.
[20] Lee H. W. J., Teo K. L., Rehbock V., Jennings L. S. (1997). `` Control parametrization enhancing technique for time optimal control problems ", Dynamic Systems and Applications, 6, 243-262.
[21] Liancheng W., Michael Y. L. (2006). `` Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells", Mathematical Biosciences, 200, 44-57.
[22] Logist F., Houska B., Diehl M., Van Impe J. F. (2010). " Fast Pareto set generation for nonlinear optimal control problems with multiple objectives ", Structural Multidisciplinary Optimization, 42, 591-603.
[23] Logist F., Van Erdeghem P. M. M., Van Impe J. F. (2009). `` Efficient deterministic multiple objective optimal control of biochemical processes ", Chemical Engineering Science, 64, 2527-2538.
[24] Mehne H. H., Farahi M. H., Kamyad A. V. ( 2006). `` MILP modelling for the time optimal control problem in the case of multiple targets ", Optimal Control Applications Methods, 27, 77-91.
[25] Messac A., Yahaya A. I., Mattson C. A. (2003). `` The normalized normal constraint method for generating the Pareto frontier ", Structural Multidisciplinary Optimization, 25, 86-98.
[26] Miele A., Mohanty B. P., Venkataraman P., Kuo Y. M. (1982). `` Numerical solution of minimax problems of optimal control, Parts 1, 2 ", Journal of Optimization Theory and Applications, 38, 97-135.
[27] Mojaver A., Kheiri H. (2015). `` Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy ", Applied Mathematics and Computation, 259, 258- 270.
[28] Myburgh C., Wong K. H. (2005). `` Computational control of an HIV model ", Annals of Operations Research, 133, 277-283.
[29] Neri F., Toivanen J., Cascella G. L., Ong Y. S. (2007). `` An adaptive multimeme algorithm for designing HIV multidrug therapies ", IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, 1313-1328.
[30] Nowak M. A. (2001). `` Helper-dependent vs. helper-independent CTL responses in HIV infection: Implications for drug therapy and resistance ", Journal of Theoretical Biology, 213, 447-459.
[31] Pannocchia G., Laurino M., Landi A. (2010). `` A model predictive control strategy toward optimal structured treatment interruptions in anti-HIV therapy ", IEEE Transactions on Biomedical Engineering, 57, 1040-1050.
[32] Pantaleo G., Graziosi C., Fauci A. S. (1993). `` New concepts in the immunopathogenesis of human immunodeficiency virus infection ", The New England Journal of Medicine, 328, 327-335.
[33] Perelson A. S., Kirschner D. E., Deboer R. (1998). `` The dynamics of HIV infection of CD4+ T-cells ", Mathematical Biosciences, 114, 81-125.
[34] Pinto C. M. A., Carvalho A. (2014). `` Mathematical model for HIV dynamics in HIV-specific helper cells ", Communications in Nonlinear Science and Numerical Simulation, 19, 693-701.
[35] Ramirez J., Meraz A. M., Hernandez J. X. V. (2000). `` Feedback control of the chemotherapy of HIV ", International Journal of Bifurcation and Chaos, 10, 2207-2219.
[36] Sakawa M. (1993). `` Fuzzy sets and interactive multiobjective optimization ", New York: Plenum Press.
[37] Sakawa M., Inuiguchi M., Kato K., Ikeda T. (1999). `` An interactive fuzzy satisficing method for multiobjective optimal control problems in linear distributed-parameter systems ", Fuzzy Sets and Systems, 102 , 237-246.
[38] Sastry V. N., Tiwari R. N., Sastr K. S. ( 1992). `` Solution of optimal control problems with lumped parameters having single or multiple goal objectives in fuzzy environment ", Fuzzy Sets and Systems, 48, 173-83.
[39] Tabak D. ( 1970). `` Application of mathematical programming techniques in optimal control: A survey ", IEEE Transactions on Automatic Control, 15, 688-90.
[40] Teo K. L., Goh C. J., Wong K. H. (1991). `` A unified computational approach to optimal control problems ", Longman Scientific and Technical, Essex.
[41] Teo K. L., Jennings L. S., Lee H. W. J., Rehbock V. (1999). `` The control parameterization enhancing transform for constrained optimal control problems ", Journal of Australian Mathematical Society Series B, 40, 314-335.
[42] UNAIDS. (2011). `` Unite for universal access: Overview brochure on 2011 high-level meeting on AIDS ", New York, NY, USA, Joint United Nations Programme on HIV/AIDS.
[43] Vargas A. E. H., Middleton R. H. (2013). `` Modelling the three stages in HIV infection ", Journal of Theoretical Biology, 12, 33-40.
[44] Wodarz D., Nowak M. A. (2002). `` Mathematical models of HIV pathogenesis and treatment ", BioEssays, 24, 1178-1187.
[45]Wodraz D., Nowak M. A. (1999). `` Specific therapy regimes could lead to long-term immunological control of HIV ", In Proceedings of the National Academy of Sciences,1 , 223-241.
[46] Zarei H. (2013). `` Soling multi-objective optimal control problems using fuzzy aggregation and embedding method ", AMO - Advanced Modeling and Optimization, 15, 553-563.
[47] Zarei H., Bahrmand M. R. ( 2014). `` Multiobjective optimal control of the linear wave equation ", Ain Shams Engineering Journal, 5, 1299-305.
[48] Zarei H., Kamyad A. V., Farahi M. H. (2011). `` Optimal control of HIV dynamic using embedding method ", Computational and Mathematical Methods in Medicine, 1-9.
[49] Zimmermann H. J. (1975). `` Fuzzy programming and linear programming with several objective functions ", Fuzzy Sets and Systems, 1, 45-55.
[50] Zurakowski R., Teel A. R. (2006). `` A model predictive control based scheduling method for HIV therapy ", Journal of Theoretical Biology, 238, 368-382. | ||
آمار تعداد مشاهده مقاله: 3,312 تعداد دریافت فایل اصل مقاله: 2,220 |