| تعداد نشریات | 48 |
| تعداد شمارهها | 1,242 |
| تعداد مقالات | 10,688 |
| تعداد مشاهده مقاله | 21,873,999 |
| تعداد دریافت فایل اصل مقاله | 14,703,050 |
Application of ZrO2–SO3H as highly efficient recyclable nano-catalyst for the green synthesis of fluoroquinolones as potential antibacterial | ||
| Iranian chemical communication | ||
| مقاله 2، دوره 7، Issue 4. pp. 230-306, Serial No. 25، دی 2019، صفحه 239-250 اصل مقاله (986.34 K) | ||
| نوع مقاله: Original Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/icc.2018.3892 | ||
| نویسندگان | ||
| Ahmad Nakhaei* 1؛ Abolghasem Davoodnia2؛ Sepideh Yadegarian1 | ||
| 1Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
| 2Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
| چکیده | ||
| Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in refluxing water. The results showed that ZrSA exhibited high catalytic activity towards the synthesis of fluoroquinolone derivatives, with the desired products being formed in high yields. Furthermore, the catalyst was recyclable and could be reused at least three times without any discernible loss in its catalytic activity. Overall, this new catalytic method for the synthesis of fluoroquinolone derivatives provides rapid access to the desired compounds in refluxing water following a simple work‐up procedure, and avoids the use of harmful organic solvents. This method therefore represents a significant improvement over the methods currently available for the synthesis of fluoroquinolone derivatives. | ||
| کلیدواژهها | ||
| Fluoroquinolone derivatives؛ antibacterial؛ fast and green synthesis؛ zirconia sulfuric acid (ZrSA) | ||
| مراجع | ||
|
[1] P.B. Fernandes, N. Shipkowitz, R.R. Bower, K.P. Jarvis, J. Weisz, D.T. Chu, J. Antimicrob. Chemother., 1986, 18, 693–701.
[2] G.E., Stein, E.J. Goldstein, Clin. Infect. Dis., 2006, 42, 1598–1607.
[3] Y.L. Chen, K.C. Fang, J.Y. Sheu, S.L. Hsu, C.C. Tzeng, J. Med. Chem., 2001, 44, 2374–2377.
[4] K. Fujimaki, T. Noumi, I. Saikawa, M. Inoue, S. Mitsuhashi, Antimicrob. Agents Chemother., 1988, 32, 827–833.
[5] E.M. Golet, A. Strehler, A.C. Alder, W. Giger, Anal. Chem., 2002, 74, 5455–5462.
[6] J.A. O'Donnell, S.P. Gelone, Infect. Dis. Clin. North Am., 2000, 14, 489–513.
[7] G.G. Zhanel, A. Walkty, L. Vercaigne, J.A. Karlowsky, J. Embil, A.S. Gin, D.J. Hoban, Can. J. Infect. Dis. Med. Microbiol., 1999, 10, 207–238.
[8] B. Llorente, F. Leclerc, R. Cedergren, Bioorg. Med. Chem., 1996, 4, 61–71.
[9] M.P. Wentland, G.Y. Lesher, M. Reuman, M.D. Gruett, B. Singh, S.C. Aldous, P. H. Dorff, J.B. Rake, S.A. Coughlin, J. Med. Chem., 1993, 36, 2801–2809.
[10] S.H. Elsea, N. Osheroff, J.L. Nitiss, J. Biol. Chem., 1992, 267, 13150–13153.
[11] Y.S. Oh, C.W. Lee, Y.H. Chung, S.J. Yoon, S.H. Cho, J. Heterocycl. Chem., 1998, 35, 541–550.
[12] J.A. Karlowsky, H.J. Adam, M. Desjardins, P.R. Lagacé-Wiens, D.J. Hoban, G.G. Zhanel, M.R. Baxter, K.A. Nichol, A. Walkty, C.A.R. Alliance, J. Antimicrob. Chemother., 2013, 68, i39–i46.
[13] T.D. Gootz, K.E. Brighty, Med. Res. Rev., 1996, 16, 433–486.
[14] A. Aubry, X.S. Pan, L.M. Fisher, V. Jarlier, E. Cambau, Antimicrob. Agents Chemother., 2004, 48, 1281–1288.
[15] L.A. Mitscher, Chem. Rev., 2005, 105, 559–592.
[16] D. Sriram, A. Aubry, P. Yogeeswari, L. Fisher, Bioorg. Med. Chem. Lett., 2006, 16, 2982–2985.
[17] F. Dubar, G. Anquetin, B. Pradines, D. Dive, J. Khalife, C. Biot, J. Med. Chem., 2009, 52, 7954–2957.
[18] A.V. Shindikar, C. Viswanathan, Bioorg. Med. Chem. Lett., 2005, 15, 1803–1806.
[19] P.G. Reddy, S. Baskaran, Tetrahedron Lett., 2001, 42, 6775–6777.
[20] K. Kawakami, K. Namba, M. Tanaka, N. Matsuhashi, K. Sato, M. Takemura, Antimicrob. Agents Chemother.,2000, 44, 2126–2129. [21] R. Schwarcz, Y. Kajii, S.I. Ono, S.I. Ono, U.S. Patent: 12/742171, 2008. [22] K. Grohe, H. Heitzer, Liebigs Ann. Chem., 1987, 1, 29–37. [23] U. Petersen, K. Grohe, K.H. Kuck, U.S. Patent: 4563459, 1986. [24] U. Petersen, W. Schrock, D. Habich, A. Krebs, T. Schenke, T. Philipps, K. Grohe, R. Endermann, K.D. Bremm, K.G. Metzger, U.S. Patent: 5480879, 1996. [25] T.A. Lee, J.H. Khoo, S.H. Song, Patent: WO2006009374, 2006. [26] I. Hayakawa, S. Atarashi, M. Imamura, S. Yokohama, N. Higashihashi, K. Sakano, M. Ohshima, U.S. Patent: 4985557, 1991. [27] I. Hayakawa, T. Hiramitsu, Y. Tanaka, Chem. Pharm. Bull., 1984, 32, 4907–4913. [28] Global and Alliance for TB Drug Development Handbook of anti-tuberculosis agents, "Moxifloxacin". Tuberculosis, 2008, 88, 127–131. [29] B. Guruswamy, R. Arul, Lett. Drug Des. Discov., 2013, 10, 86–93. [30] S.C. Azimi, E. Abbaspour-Gilandeh, Iran. Chem. Commun., 2016, 4, 245–255.
[31] B. Zakerinasab, M.A. Nasseri, H. Hassani, Iran. Chem. Commun., 2016, 4, 214–225.
[32] S.C. Azimi, E. Abbaspour-Gilandeh, Iran. Chem. Commun., 2016, 4, 245–255.
[33] B. Zakerinasab, M.A. Nasseri, H. Hassani, Iran. Chem. Commun., 2016, 4, 214–225.
[34] M.A. Nasseri, B. Zakerinasab, S. Kamayestani, Iran. Chem. Commun., 2016, 4, 283–294.
[35] M. Beyki, M. Fallah-Mehrjardi, Iran. Chem. Commun., 2017, 5, 374–383.
[36] R. Fazaeli, Z. Mohagheghian, Iran. Chem. Commun., 2016, 4, 198–206.
[37] A. Mirzaie, A. Afzalinia, T. Musabeygi, Iran. Chem. Commun., 2017, 5, 99–104.
[38] H. Veisi, D. Kordestani, S. Sajjadifar, M. Hamelian, Iran. Chem. Commun., 2014, 2, 27–33.
[39] M.A. Nasseri, B. Zakerinasab, S. Kamayestani, Iran. Chem. Commun., 2016, 4, 283–294.
[40] B. Zakerinasab, M.A. Nasseri, H. Hassani, Iran. Chem. Commun., 2016, 4, 214–225.
[41] H. Ghasemnejad-Bosra, A. Rostami, Iran. Chem. Commun., 2017, 5, 129–137.
[42] A. Mirzaie, A. Afzalinia, T. Musabeygi, Iran. Chem. Commun., 2017, 5, 99–104.
[43] B. Maddah, Iran. Chem. Commun., 2017, 5, 58–66.
[44] A. Zare, M. Rezaei, A. Hasaninejad, Iran. Chem. Commun., 2016, 4, 94–101.
[45] M. Bakavoli, V.R. Hedayati, M.M. Heravi, A. Davoodnia, H. Eshghi, Chem. Sci. Trans., 2012, 1, 341–346.
[46] H. Mirzaei, A. Davoodnia, Chin. J. Catal., 2012, 33, 1502–1507.
[47] K. Sayama, H. Arakawa, J. Phys. Chem., 1993, 97, 531–533.
[48] A. Nakhaei, A. Davoodnia, Chin. J. Catal., 2014, 35, 1761–1767.
[49] A. Nakhaei, A. Davoodnia, A. Morsali, Res. Chem. Intermed., 2015, 41, 7815–7826.
[50] A. Nakhaei, S. Yadegarian, A. Davoodnia, Heterocycl. Lett., 2016, 6, 329–339.
[51] S. Yadegarian, A. Davoodnia, A. Nakhaei, Orient. J. Chem.,2015, 31, 573–579.
[52] A. Davoodnia, A. Nakhaei, Synth. React. Inorg. Metal-Org. Nano-Met. Chem., 2016, 46, 1073–1080.
[53] A. Davoodnia, A. Nakhaei, N. Tavakoli-Hoseini, Z. Naturforsch. B, 2016, 71, 219–225.
[54] A. Nakhaei, A. Davoodnia, S. Yadegarian, N. Tavakoli-Hoseini, Iran. J. Org. Chem., 2016, 8, 1919–1927.
[55] M. Rohaniyan, A. Davoodnia, A. Nakhaei, Appl. Organometal. Chem., 2016, 30, 626–629.
[56] A. Nakhaei, A. Davoodnia, S. Yadegarian, Heterocycl. Lett., 2016, 6, 601–608.
[57] E. Kolvari, N. Koukabi, M.M. Hosseini, M. Vahidian, E. Ghobadi, RSC Advances, 2016, 6, 7419–7425.
[58] A. Amoozadeh, S. Rahmani, M. Bitaraf, F.B. Abadi, E. Tabrizian, New J. Chem., 2016, 40, 770–780. | ||
|
آمار تعداد مشاهده مقاله: 1,519 تعداد دریافت فایل اصل مقاله: 1,234 |
||