
تعداد نشریات | 41 |
تعداد شمارهها | 1,165 |
تعداد مقالات | 10,055 |
تعداد مشاهده مقاله | 18,793,484 |
تعداد دریافت فایل اصل مقاله | 13,046,454 |
القای فیبریلزایی در سرم آلبومین گاوی و تولید رشتههای آمیلوئیدی به منظور استفاده از آنها بهعنوان نانو ماده زیستی جدید | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
مقاله 13، دوره 6، شماره 2، آذر 1396، صفحه 127-137 اصل مقاله (636.72 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
امیر آراسته* 1؛ ذوالفقار لطفی2؛ محمد فضیلتی3؛ حبیب اله ناظم4 | ||
1استادیار، گروه زیستشناسی، دانشگاه آزاد اسلامی، واحد رشت، رشت، ایران | ||
2مربی، گروه زیستشناسی، دانشگاه پیام نور، تهران، ایران | ||
3استاد، گروه زیستشناسی، دانشگاه پیام نور، تهران، ایران | ||
4. استاد، گروه زیستشناسی، دانشگاه پیام نور، تهران، ایران | ||
چکیده | ||
رشتههای آمیلوئیدی دستهای از نانو رشتههای پروتئینی هستند که در آن پروتئین طبیعی به رشتههای متراکم تبدیل شدهاند. تجمع میتواند بیماریزا و یا غیربیماریزا باشد. اخیرا این رشتهها با توجه به ساختار منحصر به فردی که دارند، برای تولید نانومواد زیستی مورد توجه قرار گرفتهاند. در این مطالعه از آلبومین سرم گاوی بهعنوان یک پروتئین مدل برای بهینهسازی فرایند فیبریل زایی استفاده شد. غلظتهای 2-10 میلیگرم بر میلیلیتر در بافر با pHهای مختلف 3-7 تهیهشده و برای دورههای صفر تا 48 ساعت در دمای 30-70 درجه سانتیگراد قرار گرفتند و میزان تولید رشتههای آمیلوئیدی با روش اسپکتروفوتومتری، فلوریمتری و دورنگ نمایی دورانی بررسی شد. طیفهای حاصل از روش جذبسنجی کنگورد بر اساس میزان طول موج ماکزیمم و جذب در طول موج ماکزیمم با نمونه حاوی رنگ کنگورد مقایسه شد. غلظت 10 میلیگرم بر میلیلیتر از پروتئین که برای 48 ساعت در بافر با 4pH= و در دمای 50 درجه سانتیگراد قرار داشتند، بیشترین میزان آمیلوئید را تولید کردند. شرایط بهینه با روش فلورسانس ThT و دورنگ نمایی در غلظت 10 میلیگرم بر میلیلیتر، 4pH=، دمای 70 درجه سانتیگراد و زمان 48 ساعت بهدست آمد. حضور رشتهها با تصاویر میکرسکوپ الکترونی گذاره تأیید شد. ساختار نامحلول و ابعاد رشتههای آمیلوئیدی آنها را بهعنوان نانو مواد زیستی جدید معرفی میکند. بهینهسازی تولید این ساختارها، مجال تولید آنها را در مقیاسهای بالاتر فراهم میآورد. | ||
کلیدواژهها | ||
آلبومین سرم گاوی؛ بهینهسازی؛ فیبریلزایی؛ آمیلوئید؛ نانو ماده زیستی | ||
عنوان مقاله [English] | ||
Fibrillation induction in Bovine serum Albumin and production of amyloid fibrils for use as new Bio–nanomaterial | ||
نویسندگان [English] | ||
Amir Arasteh1؛ Zolfaghar Lotfi2؛ Mohammad Fazilat3؛ Habibollah Nazem4 | ||
1Assistant Professor, Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran | ||
2Instrcutor, Department of Biology, Payame Noor University, Tehran, Iran | ||
3Professor, Department of Biology, Payame Noor University, Tehran, Iran | ||
4Professor, Department of Biology, Payame Noor University, Tehran, Iran | ||
چکیده [English] | ||
Amyloid fibrils are a class of protein nanoparticles in which native proteins are converted into dense fibers. The aggregation can be pathogenic or non-pathogenic. Recently, these fibrils have been considered for the production of Bio–nanomaterials due to their unique structure. In this study, Bovine serum albumin was used as a model protein to optimize the fibrillation process. Concentrations of 2-10 mg/ml were prepared in buffer at different pH values of 3-7 and placed at 0-70 ºC for 0 to 48 hours, and the amounts of produced amyloid fibrils were analyzed by spectrophotometry, fluorimetry and circular dichroism. The spectra obtained from the Congo red absorption method were compared on the basis of the maximum wavelength and absorption at maximum wavelengths with a sample containing Congo red. The concentration of 10 mg/ml of protein, which was 48 hours in buffer at pH = 4 at 50 ºC, produced the highest amounts of amyloid. Optimum conditions were obtained by ThT fluorescence and circular dichroism at a concentration of 10 mg/ml, pH = 4, 70 ºC and 48 hours. The presence of the fibers was confirmed by transmission electron microscope images. The insoluble structure and dimensions of amyloid fibrils can be describe them as new Bio–nanomaterials. Optimizing the production of these structures allows them to be produced at higher scales. | ||
کلیدواژهها [English] | ||
Amyloid, Bio–nanomaterial, Bovine serum albumin, fibrillation, Optimization | ||
مراجع | ||
Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.; (2002). Molecular biology of the cell. New York: Garland Science.
Arasteh, A.; Habibi-Rezaei, M.; Ebrahim-Habibi, A.; Moosavi-Movahedi, A.A.; (2012). Response surface methodology for optimizing the bovine serum albumin fibrillation. The Protein Journal; 31(6): 457-65.
Carrió, M.; González-Montalbán, N.; Vera, A.; Villaverde, A.; Ventura, S.; (2005). Amyloid-like properties of bacterial inclusion bodies. J Mol Biol; 347: 1025-37.
Chi, E.Y.; Krishnan, S.; Randolph, T.W.; Carpenter, J.F.; (2003). Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharmaceutical research; 20(9): 1325-36.
Chiti, F.; Dobson, C.M.; (2006). Protein Misfolding, Functional Amyloid, and Human Disease. Annu Rev Biochem; 75: 333-66.
Chiti, F.; Dobson, C.M.; (2006). Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem; 75: 333-66.
Dirix, C.; Duvetter, T.; Loey, A.V.; Hendrickx, M.; Heremans, K.; (2005). The in situ observation of the temperature and pressure stability of recombinant Aspergillus aculeatus pectin methylesterase with Fourier transform IR spectroscopy reveals an unusual pressure stability of beta-helices. The Biochemical Journal; 392(Pt 3): 565-71.
Dobson, C.; (2003). Protein folding and misfolding. Nature; 426(6968): 884-90.
Dobson, C.; (2006). Protein aggregation and its consequences for human disease. Protein Pept Lett; 13(3): 219-27.
Dobson, C.M.; (2006). Protein aggregation and its consequences for human disease. Protein Pept Lett; 13(3): 219-27.
Eichner, T.; Radford, S.E.; (2011). A diversity of assembly mechanisms of a generic amyloid fold. Molecular Cell; 43(1): 8-18.
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A.; (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of controlled release: official journal of the Controlled Release Society; 157(2): 168-82.
Fink, A.L.; (1998). Protein aggregation: folding aggregates, inclusion bodies and amyloid. Folding and Design; 3(1): R9-R23.
Finke, J.M.; Roy, M.; Zimm, B.H.; Jennings, P.A.; (2000). Aggregation events occur prior to stable intermediate formation during refolding of interleukin 1. Biochemistry; 39(3): 575-83.
Fukuma, T.; Mostaert, A.; Jarvis, S.; (2006). Explanation for the mechanical strength of amyloid fibrils. Tribology Letters; 22(3): 233-7.
Ganesh, C.; Zaid, F.N.; Udgaonkar, J.B.; Varadarajan, R.; (2001). Reversible formation of on-pathway macroscopic aggregates during the folding of maltose binding protein. Protein Science; 10: 1635-44.
Garvey, M.; Gras, S.; Meehan, S.; Meade, S.; Carver, J.; Gerrard, J.; (2009). Protein nanofibres of defined morphology prepared from mixtures of crude crystallins. Int J Nanotechnol; 6: 258-2783.
Gelamo, E.; Tabak, M.; (2000). Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc; 56(11): 2255-71.
Georgiou, G.; Valax, P.; Ostermeier, M.; Horowitz, P.M.; (1994). Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein science: a publication of the Protein Society; 3(11): 1953.
Giger, K.; Vanam, R.P., Seyrek, E.; Dubin, P.L.; (2008). Suppression of insulin aggregation by heparin. Biomacromolecules; 9(9): 2338-44.
Gras, S.L.; (2007). Amyloid Fibrils: From Disease to Design. New Biomaterial Applications for Self-Assembling Cross-β Fibrils. Applied chemistry; 5.
Gsponer, J.; Vendruscolo, M.; (2006). Theoretical approaches to protein aggregation. Protein and Peptide Letters; 13(3): 287-93.
Hamada, D.; Yanagihara, I.; Tsumoto, K.; (2004). Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol; 22(2): 93-7.
Holm, N.; Jespersen, S.; Thomassen, L.; Wolff, T.; Sehgal, P.; Thomsen, L.; et al.; (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics; 1774(9): 1128-38.
Honda, C.; Kamizono, H.; Samejima, T.; Endo, K.; (2000). Studies on Thermal Aggregation of Bovine Serum Albumin as a Drug Carrier. Chem Pharm Bull; 48(4): 464-6.
Jayawardena, N.; Kaur, M.; Nair, S.; Malmstrom, J.; Goldstone, D.; Negron, L.; et al.; (2017). Amyloid Fibrils from Hemoglobin. Biomolecules; 7(2): 37.
Jeyashekar, N.S.; Sadana, A.; Vo-Dinh, T.; (2005). Protein amyloidose misfolding: mechanisms, detection, and pathological implications. Methods Mol Biol; 300: 417-35.
Juarez, J.; Taboada, P.; Mosquera, V.; (2009). Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Biophysical Journal; 96(6): 2353-70.
Knowles, T.P.; Fitzpatrick, A.W.; Meehan, S.; Mott, H.R.; Vendruscolo, M.; Dobson, C.M.; et al.; (2007). Role of intermolecular forces in defining material properties of protein nanofibrils. Science; 318(5858): 1900-3.
Kouchakzadeh, H.; Safavi, M.S.; Shojaosadati, S.A.; (2015). Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Advances in protein chemistry and structural biology; 98: 121-43.
Kratz, F.; (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of controlled release: official journal of the Controlled Release Society; 132(3): 171-83.
Lashuel, H.A.; Lansbury, P.T.; (2006). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Quarterly Reviews of Biophysics; 39(02): 167-201.
Lashuel, H.A.; Lansbury, P.T.; (2006). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Quarterly Reviews of Biophysics; 39(02): 167.
Lorenzo, A.; Yankner, B.A.; (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl AcadSci USA; 91(25): 12243-7.
Lorenzo, A.; Yankner, B.A.; (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proceedings of the National Academy of Sciences; 91(25): 12243-7.
MacPhee, C.E.; Woolfson, D.N.; (2004). Engineered and designed peptide-based fibrous biomaterials. Current Opinion in Solid State and Materials Science; 8(2): 141-9.
Militello, V.; Casarino, C.; Emanuele, A.; Giostra, A.; Pullara, F.; Leone, M.; (2004). Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical Chemistry; 107(2): 175-87.
Pilkington, S.M.; Roberts, S.J.; Meade, S.J.; Gerrard, J.A.; (2010). Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnology Progress; 26(1): 93-100.
Scheibel, T.; Parthasarathy, R.; Sawicki, G.; Lin, X.M.; Jaeger, H.; Lindquist, S.L.; (2003). Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A; 100(8): 4527-32.
Sethi, A.; Sher, M.; Akram, M.; Karim, S.; Khiljee, S.; Sajjad, A.; et al.; (2013). AlbuminLasa drug delivery and diagnostic tool and its market approved products. ActaPoloniaePharmaceutica ñ Drug Research; 70(4): 597-600.
Smith, J.; Knowles, T.; Dobson, C.; Macphee, C.; Welland, M.; (2006). Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA; 103(43): 15806-11.
Speed, M.A.; King, J.; Wang, D.I.C.; (1997). Polymerization mechanism of polypeptide chain aggregation. Biotechnology and Bioengineering; 54(4): 333-43.
Taboada, P.; Barbosa, S.; Castro, E.; Mosquera, V.; (2006). Amyloid fibril formation and other aggregate species formed by human serum albumin association. The Journal of Physical Chemistry B.; 110(42): 20733-6.
Teschke, C.M.; (1999). Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype. Biochemistry; 38(10): 2873-81.
Uversky, V.N.; Segel, D.J.; Doniach, S.; Fink, A.L.; (1998). Association-induced folding of globular proteins. Proc Natl Acad Sci USA; 95: 5480-3.
Vermeer, A.W.P.; Norde, W.; (2000). The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysical Journal; 78(1): 394-404.
Waterhouse, S.; Gerrard, J.; (2004). Amyluid Fibrilis in bionanotechnology. Current Chmistrey; 57: 519-23.
| ||
آمار تعداد مشاهده مقاله: 881 تعداد دریافت فایل اصل مقاله: 1,073 |