
تعداد نشریات | 41 |
تعداد شمارهها | 1,182 |
تعداد مقالات | 10,176 |
تعداد مشاهده مقاله | 19,114,875 |
تعداد دریافت فایل اصل مقاله | 13,250,093 |
مطالعات سینتیکی آنزیم پراکسیداز در حضور اکسید آهن و اکسید مس در دماهای مختلف | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
مقاله 2، دوره 6، شماره 4، خرداد 1397، صفحه 23-33 اصل مقاله (578.97 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
بهزاد شارقی* 1؛ مریم کاظمی نافچی2 | ||
1عضو هیئت علمی/ دانشگاه شهرکرد | ||
2دانشجوی کارشناسی ارشد بیوشیمی، دانشگاه شهرکرد | ||
چکیده | ||
چکیده پراکسیدازها (EC.1.11.1.7) گروهی از آنزیمهای اکسید و ردوکتازها هستند که توسط تعدادی از میکروارگانیسمها و گیاهان تولید میشوند و احیای پراکسیدها را کاتالیز میکنند. پراکسیدازها بهطور وسیعی در بیوشیمی بالینی و آزمایشات ایمنیشناسی آنزیمی استفاده میشوند. ایزوآنزیمC پراکسیداز ترب کوهی (HRPC) یکی از متداول ترین پراکسیدازهای شناخته شده است ساختار این آنزیم به طور غالب دارای مارپیچ آلفا است. آنزیم پراکسیداز آنزیم مهم سم زدایی است که برای خلاص شدن سلولها از پراکسید هیدروژن اضافی تحت شرایط نرمال و استرس، شامل آلودگی با سطوح سمی فلزات سنگین، به کار میروند، بههرحال استرس شدید ممکن است روی فعالیت سمزدایی خود آنزیم اثر بگذارد. مطالعات سینتیکی آنزیم پراکسیداز با استفاده از دستگاه اسپکتروفتومتر UV-Vis مجهز به سیستم کنترل الکترونیکی در دمای °C 35 و °C 45 و در 4 pH و در حضور اکسید آهن و اکسید مس انجام گرفت. بررسی پارامترهای سینتیکی نشان میدهند که اکسید آهن و اکسید مس باعث کاهش سرعت ماکسیمم (VMAX) و فعالیت آنزیم پراکسیداز میشوند. احتمال دارد با توجه به این که یون آهن و مس بار مثبت دارد، این مکانها روی جایگاههای گلیکوزیله آنزیم یا در کنار آنها قرار دارند و بهواسطه بار منفی خود مکان ای مناسبی برای اتصال آهن و مس هستند. احتمالاً اتصال آهن و مس باعث تغییر بیشتر ساختار دوم شده و باعث میشود کسر پیچههای تصادفی بیشتر از مارپیچ های آلفا باشد. | ||
کلیدواژهها | ||
واژههای کلیدی: پراکسیداز ترب کوهی؛ پارامترهای سینتیکی؛ اکسید آهن؛ اکسید مس؛ اکسیدو ردوکتازها | ||
عنوان مقاله [English] | ||
Kinetics studies of peroxidase enzyme in the presence of ferric oxide and copper oxide at difference temperatures | ||
نویسندگان [English] | ||
Behzad Shareghi1؛ Maryam Kazemi Nafchi2 | ||
1Academic staff/ Shahrekord university | ||
2M. Sc. Student of Biochemistry, Shahrekord University, Iran | ||
چکیده [English] | ||
Abstract Peroxidases are a group of oxidoreductases that are produced by a number of microorganisms and plants, and catalyse the reduction of peroxides. Peroxidases are widely used in clinical biochemistry and enzyme immunoassay. Horseradish peroxidase isoenzyme C (HRPC) is one of the characterized peroxidases. The structure of the enzyme is largely alpha helical. Peroxidase enzyme is detox important enzyme that to work process for getting rid of the cells of additional hydrogen peroxide under normal and stress conditions, including contamination with toxic levels of heavy metals, however, severe stress possible influence upon the activity of detoxification enzyme. Kinetics studies of peroxidase enzyme were performed using a spectrophotometer UV-Vis fitted with electronic control system at 35 °C and 45 °C and pH4 and in the presence ferric oxide and copper oxide. Kinetic parameters show that ferric oxide and copper oxide becomes caused the decrease of maximum speed (VMAX) and activity of the enzyme. Likely due to the ferri and copper ions have positively charged, these places are on or near the sites of glycosylation of enzyme and by their negatively charged are suitable binding sites for iron and copper. Likely binding of iron and copper are caused more changes of the secondary structure and makes random coil deduction more than alpha helix. | ||
کلیدواژهها [English] | ||
Keywords: Horseradish peroxidase, Kinetic parameters, Ferric oxide, copper oxide, Oxidoreductases | ||
مراجع | ||
Agostini, E.; Hernandez Ruiz, J.; Arnao, M. B.; Milrad, S. R.; Tigier, H. A.; Acosta, M.; (2002). A peroxidase isoenzyme secreted by turnip (Brassica napus) hairy root cultures: inactivation by hydrogen peroxide and application in diagnostic kits. Biotechnology and applied biochemistry, 35(1): 1-7.
Chiou, C. C.; Chang, P. Y.; Chan, E. C.; Wu, T. L.; Tsao, K. C.; Wu, J. T.; (2003). Urinary 8- hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clinica chimica acta, 334(1-2): 87-94.
Cheng, J.; Ming Yu, S.; Zuo, P.; (2006). Horseradish peroxidase immobilized on aluminum pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Research; 40(2): 283-290.
Fidy, J.; Paul, K. G.; Vanderkooi, J. M.; (1989). Differences in the binding of aromatic substrates to horseradish peroxidase revealed by fluorescence line narrowing. Biochemistry; 28(19): 7531-7541.
Govere, E. M.; Tonegawa, M.; Bruns, M. A.; Wheeler, E. F.; Kephart, K. B.; Voigt, J. W.; Dec J.; (2007). Using minced horseradish roots and peroxides for the deodorization of swine manure: A pilot scale study. Bioresource Technology; 98(6): 1191-1198.
Grossoehme, N. E.; Mulrooney, S. B.; Hausinger, R. P.; Wilcox, D. E.; (2007). Thermodynamics of Ni2+, Cu2+, and Zn‑ binding to the urease metallochaperone UreE. Biochemistry; 46(37): 10506-10516.
Hammel, K. E.; Cullen, D.; (2008). Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology; 11(3): 349-355.
Hatakka, A.; Lundell, T.; Hofrichter, M.; Maijala, P.; (2003). Manganese peroxidase and its role in the degradation of wood lignin. ACS Publications, 230-245.
Huang, Q.; Laberge, M.; Szigeti, K.; Fidy, J.; Schweitzer Stenner, R.; (2003). Resonance Raman spectroscopy study of change of iron spin state in horseradish peroxidase C induced by removal of calcium. Biopolymers; 72(4): 241-248.
Jia, J.; Wang, B.; Wu, A.; Cheng, G.; Li, Z.; Dong, S.; (2002). A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three -dimensional sol-gel network. Analytical Chemistry; 74(9): 2217-2223.
Keyhani, J.; Keyhani, E.; Einollahi, N.; Minai-Tehrani, D.; Zarchipour, S.; (2003). Heterogeneous inhibition of horseradish peroxidase activity by cadmium. Biochimica et Biophysica Acta (BBA)-General Subjects; 1621(2): 140 -148.
Keyhani, J.; Keyhani, E.; Zarchipour, S.; Tayefi-Nasrabadi, H.; Einollahi, N.; (2005). Stepwise binding of nickel to horseradish peroxidase and inhibition of the enzymatic activity. Biochimica et Biophysica Acta (BBA)-General Subjects; 1722(3): 312-323.
Laurenti, E.; Suriano, G.; Ghibaudi, E. M.; Ferrari, R. P.; (2000). Ionic strength and pH effect on the Fe (III)-imidazolate bond in the heme pocket of horseradish peroxidase:An EPR and UV-visible combined approach. Journal of Inorganic Biochemistry; 81(4): 259-266.
Li, X. M.; Yang, X. Y.; Zhang, S. S.; (2008). Electrochemical enzyme immunoassay using model labels. TrAC Trends in Analytical Chemistry; 27(6): 543-553.
Mantha, R.; Biswas, N.; Taylor, K. E.; Bewtra, J. K.; (2002). Removal of nitroaromatics from synthetic wastewater using two-step zero-valent iron reduction and peroxidase- catalyzed oxidative polymerization. Water Environment Research; 74(3): 280-287.
Mulrooney, S. B.; Ward, S. K.; Hausinger, R. P.; (2005). Purification and properties of the Klebsiella aerogenes UreE metal-binding domain, a functional metallochaperone of urease, J. Bacteriol; 187: 3581-3585.
Oguchi, T.; Tawaki, S.; Uyama, H.; Kobayashi, S.; (1999). Soluble polyphenol. Macromolecular Rapid Communications; 20(7): 401-403.
Sharma, S. K.; Sehgal, N.; Kumar, A.; (2002). A quick and simple biostrip technique for detection of lactose. Biotechnology Letters; 24(20): 1737-1739.
Silaghi-Dumitrescu, R. L.; (1996). HRP: A summary of its structure, mechanism and substrate diversity. LABPV-Peroxidase Biotechnology and Application, 1-17.
Smulevich, G.; Paoli, M.; De Sanctis, G.; Mantini, A. R.; Ascoli, F.; Coletta, M.; (1997). Spectroscopic evidence for a conformational transition in horseradish peroxidase at very low pH. Biochemistry; 36(3): 640-649.
Tayefi-Nasrabadi, H.; Keyhani, E.; Keyhani, J.; (2006). Conformational changes and activity alterations induced by nickel ion in horseradish peroxidase. Biochimie; 88(9): 1183-1197.
Ulson De Souza, S. M. A. G.; Forgiarini, E.; Ulson De Souza, A. A.; (2007). Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). Journal of Hazardous Materials; 147(3): 1073-1078.
Veitch, N. C.; (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry; 65(3): 249-259.
Wang, Z.; Li, M.; Su, P.; Zhang, Y.; Shen, Y.; Han, D.; Ivaska, A.; Niu, L.; (2008). Direct electron transfer of horseradish peroxidase and its electrocatalysis based on carbon nanotube / thionine / gold composites. Electrochemistry Communications; 10(2): 306-310.
Ye, F. X.; Zhu, R. F.; Li, Y.; (2009). Deodorization of swine manure slurry using horseradish peroxidase and peroxides. Journal of Hazardous Materials; 167(1-3): 148-153.
Yoon, K. –Y.; Hoon Byeon, J.; Park, J. –H.; Hwang, J.; (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment; 373(2): 572-575.
Experimental Animal Biology; 1(1): 2015.
| ||
آمار تعداد مشاهده مقاله: 530 تعداد دریافت فایل اصل مقاله: 474 |