تعداد نشریات | 41 |
تعداد شمارهها | 1,114 |
تعداد مقالات | 9,524 |
تعداد مشاهده مقاله | 17,190,780 |
تعداد دریافت فایل اصل مقاله | 12,032,436 |
شناسایی، طبقه بندی و آنالیز بیان بیوانفورماتیکی خانواده ژنی عوامل نسخه برداری NAC در ژنوم Hordeum vulgare cv. Morex | ||
فصلنامه علمی زیست فناوری گیاهان زراعی | ||
مقاله 2، دوره 7، شماره 1 - شماره پیاپی 21، خرداد 1397، صفحه 17-35 اصل مقاله (771.06 K) | ||
نوع مقاله: علمی پژوهشی | ||
نویسندگان | ||
سارا دژستان* 1؛ مهدی بهنامیان2؛ سحر فتحی اجیرلو3؛ محمدعلی ابراهیمی4؛ بنیامین یزدانی5 | ||
1دانشیار گروه زراعت و اصلاحنباتات، دانشگاه محقق اردبیلی، اردبیل | ||
2استادیار گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل | ||
3دانشآموخته کارشناسیارشد بیوتکنولوژی دانشگاه پیام نور، تهران | ||
4دانشیار گروه بیوتکنولوژی، دانشگاه پیام نور، تهران | ||
5دانشآموخته دکتری ژنتیک مولکولی دانشگاه محقق اردبیلی، اردبیل | ||
چکیده | ||
خانواده ژنی NAC یک خانواده بزرگ عوامل نسخهبرداری اختصاصی گیاهی است که نقشهای متنوعی در مراحل نمو گیاهی و پاسخ به تنشها ایفا میکند. با تکمیل پروژه توالییابی ژنوم Hordeum vulgare cv. Morex امکان مطالعات بیوانفورماتیکی خانواده ژنی NAC در جو فراهم گردید. در این پژوهش با استفاده از پایش ژنومی، در کل 73 ژن غیرتکراری رمزکننده NAC در توالیهای ژنومی Hordeum vulgare cv. Morex شناسایی شد. یک درخت تبارشناسی مرکب با توالیهای پروتئینی HvNAC و تعدادی از توالیهای پروتئینی NAC شناختهشده برنج و آرابیدوپسیس ترسیم شد و آنها به 15 زیرگروه مشخص طبقهبندی شدند. مشخص شد که پراکنش ژنهای HvNAC روی کروموزومهای جو غیریکنواخت است. بیشتر ژنهای NAC بهصورت انفرادی قرار گرفتهاند و معدودی از آنها با دو یا سه ژن خوشهبندی شدهاند. بیشتر عناصر cis ردیابیشده در نواحی بالادست و پاییندست ژنهای HvNAC در پاسخ به نور، پاسخ به تنشهای غیرزیستی و به مقدار نسبتاً اندک در پاسخ به تنش-های زیستی دخیل هستند. در آنالیز in silico بیان ژن، ژنهای HvNAC در دامنه گستردهای از بافتهای مختلف بیان شدند و در مراحل نموی به-طور عمده بیان نشدند، همچنین، ژنهای HvNAC در شرایط تنش غیرزیستی تا حدودی و به مقدار نسبتاً کمتر در تنشهای زیستی بیان شدند. این اطلاعات بیوانفورماتیکی چارچوبی برای مطالعات ژنومی و عملکردی این خانواده ژنی در جو فراهم میکند. | ||
کلیدواژهها | ||
آنالیز بیان بیوانفورماتیکی؛ پایش ژنوم؛ تراشه ژنی Affymetrix barley1؛ عوامل نسخهبرداری؛ Hordeum vulgare | ||
موضوعات | ||
بیوانفورماتیک | ||
عنوان مقاله [English] | ||
Identification, classification and bioinformatics expression analysis of NAC transcription factor gene family in Hordeum vulgare cv. Morex genome | ||
نویسندگان [English] | ||
Sara Dezhsetan1؛ Mahdi Behnamian2؛ Sahar Fathi Ajirlou3؛ Mohammad Ali Ebrahimi4؛ Beniamin Yazdani5 | ||
1Associate Professor, Department of Agronomy & Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
2Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
3Former M. Sc. student of Biotechnology, Department of Agriculture, Karaj Payam Noor University, Alborz, Iran | ||
4Associate Professor, Payame Noor University, Tehran, Iran. | ||
5Former Ph. D. student of Molecular Genetics, Department of Agronomy & Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
چکیده [English] | ||
NAC gene family is one large family of plant-specific transcription factor that plays various roles in plant developmental stages and stress responses. The possibility of bioinformatics studies on NAC gene family in barley was provided with completion of the genome sequencing of Hordeum vulgare cv. Morex project. In this research using genome scanning, 73 non-redundant NAC-encoding genes in total were identified from the genomic sequences of Hordeum vulgare cv. Morex. A composite phylogenetic tree was constructed with HvNAC protein sequences and a number of known rice and Arabidopsis NAC protein sequences and tree was classified into 15 distinct subgroups. It is revealed the uneven distribution of the HvNAC genes on barley chromosomes. Most members of NAC genes were not located in groups (singletons) and few members of this family were located in groups with two or three genes. Most detected cis elements in upstream and downstream of HvNAC genes were involved in response to light, response to abiotic stresses and relatively low in response to biotic stresses. In silico gene expression analysis revealed that HvNAC genes were expressed in a wide range of tissues and is not highly expressed in developmental stages. Also, the HvNAC genes partly is expressed in stress conditions, especially in abiotic stresses and relatively less expressed in biotic stresses. This bioinformatics information provide a framework for genomics and functional studies of this gene family in barley. | ||
کلیدواژهها [English] | ||
Affymetrix barley1 gene chip, Bioinformatics expression analysis, genome scanning, Hordeum vulgare, Transcription factor | ||
مراجع | ||
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon Mutant. Plant Cell Online. 9: 841–857.
Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55: 604–619.
Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci. 12:64–70.
Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39: 29–37.
Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pl [alpha]-amylase gene promoter. Plant Cell Online 7: 1879–1891.
Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen JV (1999) Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J. 17: 1–9.
Hendelman A, Stav R, Zemach H, Arazi T (2013) The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. J. Exp. Bot. 64: 5497–5507.
Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153: 185–197.
Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDJ, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13:75.
Kato H, Motomura T, Komeda Y, Saito T, Kato A (2010) Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. J Plant Physiol 167: 571–577.
Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell Online 18: 3132–3144.
Kozik A, Kochetkova E, Michelmore R (2002) GenomePixelizer--a visualization program for comparative genomics within and between species. Bioinformatics 18: 335–336.
Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group Phureja. PLoS One 7:e34775.
Mallory AC, Dugas D V, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14: 1035–1046.
Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol. 176:288–298.
Mitsuda N, Iwase A, Yamamoto H, et al (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell Online 19:270–280.
Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51: 617-30.
Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene. 465: 30–44.
Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10: 79–87.
Park J, Kim YS, Kim SG, Jung JH, Woo JC, Park CM (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol. 156: 537–549.
Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. Mol. Biotechnol. 49: 138–150.
Quach TN, Tran LSP, Valliyodan B, Nguyen HT, Kumar R, Neelakandan AK, Guttikonda SK, Sharp RE, Nguyen HT (2014) Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis. PLoS One 9:e84886.
Ramaswamy M, Narayanan J, Manickavachagam G, Athiappan S, Arun M, Gomathi R, Ram B (2017) Genome wide analysis of NAC gene family “sequences” in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. Agri Gene 3: 1–11.
Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 10: 792–805.
Riechmann J, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110.
Saad ASI, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci. 203–204: 33–40.
Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D (2012) Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol. Plant-Microbe Interact. 25: 684–696.
Shah ST, Pang C, Fan S, Song M, Arain S, Yu S (2013) Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene 531: 220–234.
Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159-170.
Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genomics 284: 173–183.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.
Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in Wheat. Science 314: 1298–1301.
Voitsik A-M, Muench S, Deising HB, Voll LM (2013) Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. BMC Plant Biol. 13:85.
Wei S, Gao L, Zhang Y, Zhang F, Yang X, Huang D (2016) Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress. Plant Cell Rep. 35: 1827-1839.
Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010a) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol. Biol. Rep. 37: 3703–3712.
Xia N, Zhang G, Sun YF, Zhu L, Xu LS, Chen XM, Liu B, Yu YT, Wang XJ, Huang LL, Kang ZS (2010b) TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol. Plant Pathol. 74: 394–402.
Xie Q, Frugis G, Colgan D, Chua N (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14: 3024–3036.
Xie Q, Guo H., Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167–170.
Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol. Biol. 59: 191–203.
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22: 1249–1263.
Yang SD, Seo PJ, Yoon HK, Park CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR / RD genes. Plant Cell 23: 2155–2168.
Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Kaku H, Minami E, Nishizawa Y (2014) OsNAC111, a blast disease–responsive transcription factor in rice, positively regulates the expression of defense-related genes. Mol. Plant-Microbe Interact. 27: 1027–1034.
Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY, Chen F, Dixon RA (2010) An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J. 63: 100–114.
Zhao Y, Sun J, Xu P, Zhang R, Li L (2014) Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus Species. Plant Physiol. 164: 765–776.
Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun. 379: 985–989.
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Online 20: 2763–2782.
Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr. Opin. Plant Biol. 10: 564–572. | ||
آمار تعداد مشاهده مقاله: 595 تعداد دریافت فایل اصل مقاله: 813 |