تعداد نشریات | 41 |
تعداد شمارهها | 1,101 |
تعداد مقالات | 9,443 |
تعداد مشاهده مقاله | 17,012,359 |
تعداد دریافت فایل اصل مقاله | 11,933,510 |
پایش و پیش بینی تغییرات کاربری اراضی و گسترش فیزیکی شهر بابل در دوره زمانی 1419-1364 با استفاده از تصاویر چندزمانه لندست | ||
برنامه ریزی توسعه کالبدی | ||
مقاله 2، دوره 5، شماره 3 - شماره پیاپی 11، آذر 1397، صفحه 32-52 اصل مقاله (3.82 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/psp.2018.5257 | ||
نویسندگان | ||
محمد کریمی فیروزجایی1؛ مجید کیاورز* 2؛ محسن کلانتری3 | ||
1دانشجوی دکتری گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه تهران | ||
2استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه تهران | ||
3دانشیار گروه جغرافیا، دانشگاه زنجان | ||
چکیده | ||
امروزه تغییرات کاربری اراضی و گسترش بی رویه فیزیکی شهرها سبب مشکلات متعددی از جمله، در هم تنیدگی کالبدی، اجتماعی، اقتصادی و زیست محیطی شده است. هدف پژوهش حاضر، بررسی تغییرات کاربری اراضی و گسترش فیزیکی شهر بابل طی 30 سال گذشته و پیشبینی روند تغییرات کاربری اراضی برای آینده میباشد. برای این منظور از تصاویر چند زمانه لندست برای سالهای 1364، 1371، 1379، 1387 و 1394 استفاده شده است. در پژوهش حاضر از الگوریتم بیشترین شباهت برای طبقهبندی کاربری اراضی ، از مدل کراستب برای شناخت تغییرات کاربری اراضی و از شاخص آنتروپی شانون گسترش پراکنده شهر بررسی شد. در ادامه برای پیشبینی روند تغییرات کاربری اراضی و گسترش فیزیکی شهر بابل نیز از مدل پیشبینی سلولهای خودکار-مارکوف استفاده شد. نتایج حاصل از این پژوهش، بیانگر گسترش بیرویه شهر بابل در طی 30 سال گذشته است. به طوری که رشد 92 درصدی مساحت اراضی ساخته شده سبب تخریب بیش از حد اراضی زارعی و فضای سبز در حاشیه شهر شده است. بررسیها نشان میدهد که با افزایش فاصله از اراضی ساخته شده میزان تغییرات کاربری اراضی کاهش چشمگیری داشته است. همچنین شاخص آنتروپی شانون طی سالهای گذشته روند رو به رشدی داشته بهطوری که از 73/0 در سال 1364 به 8/0 در سال 1394 رسیده است. نتایج تغییرات کاربری اراضی، رشد 33 درصدی اراضی ساخته شده و کاهش 704 هکتاری اراضی زراعی را برای سال 1419 نسبت به سال 1394 قابل پیشبینی است و این امر ضرورت توجه به موضوع گسترش شهری و پیامدهای آن درشهر و پیرامون را نشان میدهد. | ||
کلیدواژهها | ||
پیشبینی؛ کاربری اراضی؛ گسترش فیزیکی؛ سنجش از دور؛ بابل | ||
عنوان مقاله [English] | ||
Monitoring and prediction of land use changes and physical expansion of Babol city during 1985-2040 using multi-temporal Landsat imagery | ||
نویسندگان [English] | ||
Mohammad Karimi Firozjaei1؛ Majid Kiavarz2؛ Mohsen Kalantari3 | ||
1PHD Student Department of Remote Sensing and GIS, University of Tehran | ||
2Assist. Prof. Department of Remote Sensing and GIS, University of Tehran | ||
3Associate Professor Department of Geography, University of Zanjan | ||
چکیده [English] | ||
Nowadays, interlinking of structural, social, environmental and economic aspects of cities is a major problem which results from unplanned horizontal expansion of cities and their land-use changes. The purpose of the present study is to investigate the land use changes and physical expansion of Babol city during the last 30 years and to predict the land use change’s trend for the future. To do so, Landsat multi-temporal images of 1985, 1992, 2000, and 2015 were used. The maximum likelihood algorithm was applied for classification of land use and cross tab model was used for investigation of land use changes. The scattered expansion of the city was examined through Shannon’s entropy index. Moreover, the CA-Markov model was applied to predict the land use change’s trend as well as the physical expansion of Babol city. Results of the present study confirmed the extreme physical expansion of Babol city during the last three decades. Such an expansion was the main reason for degradation of agricultural lands and green spaces around the suburbs. The growth rate of the built-up areas was 92%. The more distance from the built-up areas the less changes occurred in land uses. Also, the Shannon entropy index was increased from 0.73 in 1985 to 0.8 in 2015 which is an indication of the scattered expansion of the city. It can be predicted that besides decreasing 704 hectares of agricultural areas, a 33% growth will be occurred in built up areas from 2015 to 2040. It consequently requires the specific attention of urban managers and planners. | ||
کلیدواژهها [English] | ||
prediction, Land-use, physical expansion, Remote sensing, Babol | ||
مراجع | ||
تقی زاده، سیامک؛ منوچهر معصومی. (1388)، بررسی تغییرات کاربری اراضی شهرستان نقده با استفاده از تکنیک های سنجش از دور و سیستم اطلاعات جغرافیایی در بازه زمانی(1343-1388)، سپهر، 59-65. جلالیان, حمید؛ پرویزضیائیان، پرستو دارویی و خدیجه کریمی (1394). تحلیل خزش شهری و تحولات کاربری اراضی (مطالعات تطبیقی شهرهای ارومیه و اصفهان)، فصلنامه علمی ـ پژوهشی برنامهریزی توسعه کالبدی, 2(4), 73-98. خاکپور، براتعلی؛ سعدالله ولایتی و قاسم کیانژاد، قاسم. (1386)، الگوی تغییر کاربری اراضی شهر بابل-طی سالهای 78-1362، نشریه جغرافیا و توسعه ناحیهای، 5(9) 45-64. علوی پناه، سید کاظم، (1382)، کاربرد سنجش از دور در علوم زمین(علوم خاک). انتشارات دانشگاه تهران. فارسی، جواد ومریم یوسفی (1392)، آشکارسازی تغییرات کاربری اراضی با استفاده از دادههای سنجش از دور (مطالعه موردی: دشت بجنورد)، نشریه جغرافیا و مطالعات محیطی، 2(7)، ۹۵-۱۰۶. فیضی زاده، بختیار و سید محمود حاجی میر رحیمی (1386)، اشکارسازی تغییرات کاربری اراضی با استفاده از روش طبقهبندی شی گرا (مطالعه موردی: شهرک اندیشه)، همایش ژئوماتیک 87، سازمان نقشهبرداری، 40-50. Adami, M., Rudorff, B. F. T., Freitas, R. M., Aguiar, D. A., Sugawara, L. M., & Mello, M. P. (2012). Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability, 4(4), 574-585. Ajayi, Adedeji, H., Adeofun, C & Awokola, S. (2016). Land Use Change Assessment, Prediction Using Remote Sensing, and GIS Aided Markov Chain Modelling at Eleyele Wetland Area, Nigeria. Journal of Settlements and Spatial Planning, 7(1), 51. Azizi, A., Malakmohamadi, B., & Jafari, H. (2016). Land use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model. Global Journal of Environmental Science and Management, 2(3), 223-234. Boori, M. S., Voženílek, V., & Choudhary, K. (2015). Land use/cover disturbance due to tourism in Jeseníky Mountain, Czech Republic: A remote sensing and GIS based approach. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 17-26. Cabral, P., & Zamyatin, A. (2009). Markov processes in modeling land use and land cover changes in Sintra-Cascais, Portugal. Dyna, 76(158), 191-198. Dadras, M., Shafri, H. Z., Ahmad, N., Pradhan, B., & Safarpour, S. (2015). Spatio-temporal analysis of urban growth from remote sensing data in Bandar Abbas city, Iran. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 35-52. Effat, H. A., & El Shobaky, M. A. (2015). Modeling and Mapping of Urban Sprawl Pattern in Cairo Using Multi-Temporal Landsat Images, and Shannon’s Entropy. Advances in Remote Sensing, 4(04), 303. George, J. (2016). Land Use/Land Cover Mapping With Change Detection Analysis of Aluva Taluk Using Remote Sensing and GIS. International Journal of Science, Engineering and Technology, 4(2), 383-389. Gong, W., Yuan, L., Fan, W., & Stott, P. (2015). Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata—Markov modelling. International Journal of Applied Earth Observation and Geoinformation, 34, 207-216. Jain, M., Dimri, A. P., & Niyogi, D. (2016). Urban Sprawl Patterns and Processes in Delhi from 1977 to 2014 Based on Remote Sensing and Spatial Metrics Approaches. Earth Interactions, 20(14), 1-29. Jat, M. K., Garg, P. K., & Khare, D. (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International journal of Applied earth Observation and Geoinformation, 10(1), 26-43. Jensen, J. R.; (2005). Introductory digital image processing: A remote sensing perspective (3rd Edn), Upper Saddle River, NJ: Prentice-Hall. Ji, W., Ma, J., Twibell, R. W., & Underhill, K. (2006). Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics.Computers, Environment and Urban Systems, 30(6), 861-879. Karna, B. K., Mandal, U. K., & Bhardwaj, A. (2013). Urban sprawl modeling using RS and GIS technique in Kirtipur municipality. Nepalese Journal of Geoinformatics, 12, 50-56. Louca, M., Vogiatzakis, I. N., & Moustakas, A. (2015). Modelling the combined effects of land use and climatic changes: Coupling bioclimatic modelling with Markov-chain Cellular Automata in a case study in Cyprus.Ecological Informatics, 30, 241-249. Lu, D., Mausel, P., Batistella, M., & Moran, E. (2005). Land‐cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. International Journal of Remote Sensing, 26(1), 101-114. Megahed, Y., Cabral, P., Silva, J., & Caetano, M. (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS International Journal of Geo-Information, 4(3), 1750-1769. Mishra, Monalisha, Mishra, Kamal Kant & Subudhi, A. P., (2014). Urban spraw mapping and land use change analysis using remote sensing and GIS (Case study of Bhubaneswar City, Orissa). Retrieved from www.gisresources.com Nazarnia, N., Schwick, C., & Jaeger, J. A. (2016). Accelerated urban sprawl in Montreal, Quebec City, and Zurich: Investigating the differences using time series 1951–2011. Ecological Indicators, 60, 1229-1251. Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric engineering and remote sensing, 66(8), 1011-1016. Rajitha, K., Mukherjee, C. K., Vinu Chandran, R., & Prakash Mohan, M. M. (2010). Land-cover change dynamics and coastal aquaculture development: a case study in the East Godavari delta, Andhra Pradesh, India using multi-temporal satellite data. International Journal of Remote Sensing, 31(16), 4423-4442. Rashmi, M. K., & Lele, N. (2010). Spatial modeling and validation of forest cover change in Kanakapura region using GEOMOD. Journal of the Indian Society of Remote Sensing, 38(1), 45-54. Sarvestani, M. S., Ibrahim, A. L., & Kanaroglou, P. (2011). Three decades of urban growth in the city of Shiraz, Iran: A remote sensing and geographic information systems application. Cities, 28(4), 320-329. Sidhu, N., Rishi, M. S., & Singh, R. (2016). Spatio-Temporal Study of the Distribution of Land Use and Land Cover Change Pattern in Chandigarh, India Using Remote Sensing and GIS Techniques. In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment (pp. 785-789). Springer International Publishing. Silveira, J. J., Espíndola, A. L., & Penna, T. J. P. (2006). Agent-based model to rural–urban migration analysis. Physica A: Statistical Mechanics and its Applications, 364, 445-456. Singh, P., & Khanduri, K. (2011). Land use and land cover change detection through remote sensing & GIS technology: case study of Pathankot and Dhar Kalan Tehsils, Punjab. Journal, of. Geomatics and Geosciences, 1(4), 839-846. Sisodia, P. S., Tiwari, V., & Dahiya, A. K. (2016). Urban Sprawl Monitoring using Remote Sensing and GIS Techniques of the City Jaipur, India.International Journal of Applied Geospatial Research (IJAGR), 7(3), 93-104. Wakode, Hemant Balwant, Klaus, Baier,Ramakar, Jha. & Raffig, Azzam, (2014).Analysis of urban growth using Lands at TM/ETM data and GIS- a case study of Hyderabad, India. Arabian Journal of Geosciences, 7(1), 109-121. Wu, Q., Li, H. Q., Wang, R. S., Paulussen, J., He, Y., Wang, M., ... & Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and urban planning, 78(4), 322-333. Xu, C. H. E. N., Shi-Xiao, Y. U., & ZHANG, Y. P. (2013). Evaluation of spatiotemporal dynamics of simulated land use/cover in China using a probabilistic cellular automata-Markov Model. Pedosphere, 23(2), 243-255. Yang, X., Zheng, X. Q., & Lv, L. N. (2012). A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling, 233, 11-19. Yeh, A. G. O., & Xia, L. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric engineering and remote sensing, 67(1), 83-90. | ||
آمار تعداد مشاهده مقاله: 961 تعداد دریافت فایل اصل مقاله: 1,777 |