
تعداد نشریات | 41 |
تعداد شمارهها | 1,153 |
تعداد مقالات | 9,923 |
تعداد مشاهده مقاله | 18,480,092 |
تعداد دریافت فایل اصل مقاله | 12,835,962 |
Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems | ||
Control and Optimization in Applied Mathematics | ||
مقاله 1، دوره 2، شماره 2، اسفند 2017، صفحه 1-14 اصل مقاله (694.44 K) | ||
نوع مقاله: Research Article | ||
نویسنده | ||
Saeed Nezhadhosein* | ||
Department of Applied Mathematics, Payame Noor University, Tehran, 193953697, Iran | ||
چکیده | ||
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations, as Haar matrix equations using Kronecker product. Then the error analysis of the proposed method is presented. Some numerical examples are given to demonstrate the efficiency of the method. The solutions converge as the number of approximate terms increase. | ||
کلیدواژهها | ||
Time-variant linear-quadratic optimal control problems؛ Matrix algebraic equation؛ Haar wavelet | ||
عنوان مقاله [English] | ||
معادلات ماتریسی هار برای حل مسائل کنترل بهینه درجه دوم خطی وابسته به زمان | ||
چکیده [English] | ||
در این مقاله موجکهای هار برای حل مسائل کنترل بهینه وابسته به زمان درجه دوم خطی زمان پیوسته به کار رفته است. ابتدا با شرایط لازم بهینگی مساله به یک مساله مقدار مرزی دونقطهای TBVP تبدیل میشود. سپس موجکهای هار برای تبدیل TBVP، بهعنوان یک سیستم از معادلات دیفرانسیلی، به یک سیستم معادلات جبری ماتریسی، بهعنوان معادلات ماتریسی هار با ضرب کرونکر، تبدیل میشود. تحلیل خطای روش پیشنهادی ارائه شده است. جوابها با افزایش تعداد جملات تقریب همگرا میشود | ||
کلیدواژهها [English] | ||
مسائل کنترل بهینه درجه دوم خطی وابسته به زمان, معادله جبری ماتریسی, موجک هار | ||
مراجع | ||
bibitem{Betts}%1
Betts J.T. (2010). ``Practical Methods for Optimal Control and Estimation Using Nonlinear Programming", Society for Industrial and Applied Mathematics. bibitem{rf18}%2 Kirk D.E. (2004). ``Optimal Control Theory: An Introduction", Dover Publications. bibitem{Srinivasan2003}%3 Srinivasan B., Palanki S., Bonvin D. (2003). ``Dynamic optimization of batch processes: I. characterization of the nominal solution'', Computers Chemical Engineering, 27, 1, 1-26. bibitem{Binder2001}%4 Binder T., Blank L., Dahmen W., Marquardt W. (2001). ``Iterative algorithms for multiscale state estimation", part 1: Concepts, Journal of Optimization Theory and Applications, 111, 3, 501--527. bibitem{Schlegel2005}%5 Schlegel M., Stockmann K., Binder T., Marquardt W. (2005). ``Dynamic optimization using adaptive control vector parameterization", Computers Chemical Engineering, 29, 8, 1731--1751. bibitem{Walsh}%6 CHEN W.L., SHIH Y.P. (1978). ``Analysis and optimal control of time-varying linear systems via walsh functions", International Journal of Control, 27, 6, 917--932. bibitem{blockpulse2007}%7 Wang X.T. (2007). ``Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and legendre polynomials", Applied Mathematics and Computation, 184, 2, 849--856. bibitem{Hsiaovariational}%8 Hsiao C.H. (2004). ``Haar wavelet direct method for solving variational problems", Mathematics and Computers in Simulation, 64, 5, 569--585. bibitem{Legendre2012}%9 El-Kady M. (2012). ``Efficient reconstructed legendre algorithm for solving linearquadratic optimal control problems", Applied Mathematics Letters, 25, 7, 1034--1040. bibitem{Kafash2012}%10 Kafash B., Delavarkhalafi A., Karbassi S.M. (2012). ``Application of chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems", Scientia Iranica, 19, 3, 795-- 805. bibitem{Kosmol2001}%11 Kosmol P., Pavon M. (2001). ``Solving optimal control problems by means of general lagrange functionals", Automatica, 37, 6, 907--913. bibitem{Razzaghi1989}%12 Razzaghi M., Tahai A., Arabshahi A. (1989). ``Solution of linear two-point boundary value problems via fourier series and application to optimal control of linear systems", Journal of the Franklin Institute, 326, 4, 523--533. bibitem{Aziz2014}%13 Aziz I., ul Islam S., Khan F. (2014). ``A new method based on haar wavelet for the numerical solution of two-dimensional nonlinear integral equations", Journal of Computational and Applied Mathematics, 272, 0, 70--80. bibitem{Kaur2014}%14 Kaur H., Mittal R., Mishra V. (2014). ``Haar wavelet solutions of nonlinear oscillator equations", Applied Mathematical Modelling. bibitem{Hsiao1998}%15 Hsiao C.H., Wang W.J. (1998). ``State analysis and optimal control of linear timevarying systems via haar wavelets", Optimal Control Applications and Methods, 19, 6, 423--433. bibitem{Collocation}%16 Dai R., Cochran J.E., (2009). ``Wavelet collocation method for optimal control problems", Journal of Optimization Theory and Applications, 143, 2, 265--278. bibitem{Wavelet}%17 Chui C. (1992). ``An Introduction to Wavelets", Academic Press. bibitem{Babolian2009}%18 Babolian E., Shahsavaran A. (2009). ``Numerical solution of nonlinear fredholm integral equations of the second kind using haar wavelets", Journal of Computational and Applied Mathematics, 225, 1, 87--95. | ||
آمار تعداد مشاهده مقاله: 455 تعداد دریافت فایل اصل مقاله: 434 |