تعداد نشریات | 41 |
تعداد شمارهها | 1,112 |
تعداد مقالات | 9,508 |
تعداد مشاهده مقاله | 17,141,709 |
تعداد دریافت فایل اصل مقاله | 12,007,480 |
An improved structure models to explain retention behavior of atmospheric nanoparticles | ||
Iranian chemical communication | ||
مقاله 7، دوره 2، Issue 1, pp. 1-81, Serial No. 2، فروردین 2014، صفحه 56-71 اصل مقاله (282.04 K) | ||
نوع مقاله: Original Research Article | ||
نویسندگان | ||
Sharmin Esmaeilpoor1؛ Zahra Shirzadi2؛ Hadi noorizadeh* 1 | ||
1Department of Chemistry, Payame Noor University of ilam, Ilam, Iran | ||
2Department of chemistry, Islamic Azad University, Shahreza Branch, Isfahan, Iran | ||
چکیده | ||
The quantitative structure-retention relationship (QSRR) of nanoparticles in roadside atmosphere against the comprehensive two-dimensional gas chromatography which was coupled to high-resolution time-of-flight mass spectrometry was studied. The genetic algorithm (GA) was employed to select the variables that resulted in the best-fitted models. After the variables were selected, the linear multivariate regressions [e.g. the partial least squares (PLS)] as well as the nonlinear regressions [e.g. the kernel PLS (KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN)] were utilized to construct the linear and nonlinear QSRR models. The correlation coefficient cross validation (Q2) and relative error for test set L-M ANN model are 0.939 and 4.89, respectively. The resulting data indicated that L-M ANN could be used as a powerful modeling tool for the QSPR studies. | ||
کلیدواژهها | ||
Atmospheric nanoparticles؛ QSRR؛ GA-KPLS؛ Levenberg -Marquardt artificial neural network | ||
اصل مقاله | ||
Click on Google Scholar for all information of this Article in google Scholar | ||
مراجع | ||
[1] D.M. Brown, M.R.Wilson, W. MacNee, V. Stone, K. Donaldson, Toxicol. Appl. Pharm., 2001, 175, 191-199.
[2] K. Inoue, H. Takano, R. Yanagisawa, M. Sakurai, T. Ichinose, K. Sadakane, T. Yoshikawa, Respir. Res., 2005, 6, 106-113.
[3] G. Buzorius, A. Zelenyuk, F. Brechtel, D. Imre, Geophys Res Let., 2002, 29, 1974–1978.
[4] Zh. Chong-Shu, Ch-Ch. Chen, J-J. Cao, Ch-J. Tsai, Ch.C.-K. Chou, Sh-Ch. Liu, Atmos. Environ, 2010, 44, 2668-2673.
[5] S.S. Hang Ho, J. Zh. Yu, J. Chromatogr. A, 2004, 1059, 121–129.
[6] J. Dallüge, M. van Rijn, J. Beens, R.J.J. Vreuls, U.A.Th.Brinkman, J. Chromatogr. A, 2002, 965, 207-217.
[7] F. Adam, F. Bertoncini, N. Brodusch, E. Durand, D. Thiebaut, D. Espinat, M-C. Hennion, J. Chromatogr. A, 2007, 1148, 55–64.
[8] T. Hyölyläinen, M. Kallio, M. Shimmo, K. Saamio, K. Hartonen, M.L. Riekkola, in: Presentation at the First International Symposium on Two-Dimensional Gas Chromatography, Volendam, The Netherlands, 2003.
[9] C. Muhlen, C. Alcaraz Zini, E.B. Caramao, P.J. Marriott, J. Chromatogr. A., 2008, 1200, 34–42.
[10] M. Adahchour, M. Brandt, H.U. Baier, R.J.J. Vreuls, A.M. Batenburg, U.A.Th. Brinkman, J. Chromatogr. A., 2004, 1054, 57-65.
[11] J.F. Hamilton, P.J. Webb, A.C. Lewis, J.R. Hopkins, S. Smith, P. Davy, Atmos. Chem. Phys., 2004,4, 1279-1290.
[12] N. Ochiai, T. Ieda, K. Sasamoto, A. Fushimi, Sh. Hasegawa, K. Tanabe, Sh. Kobayashi, J. Chromatogr. A., 2007, 1150, 13–20.
[13] J. Leban, M. Baierl, J. Mies, V. Trentinaglia, S. Rath, K. Kronthaler, K. Wolf, A. Gotschlich, M.H.J. Seifert, J. Bioorg. Med. Chem. Lett.,2007, 17, 5858–5862.
[14] K. Bodzioch, A. Durand, R. Kaliszan, T. Bączek, Y. Vander Heyden, Talanta, 2010, 81, 1711-1718
[15] S. Riahi, E. Pourbasheer, M.R. Ganjali, P. Norouzi, J.Hazard.Mater.,2009, 166, 853-859.
[16] S.H. Woo, J. ChO, Y.S. Yun, H. Choi, Ch.S. Lee, D.S. Lee, J. Hazard. Mater.,2009, 161, 538–544
[17] N. Krämer, A.L. Boulesteix, G. Tutz, Chemom. Intell. Lab. Syst., 2008, 94, 60–69.
[18] S. Haykin, Neural Networks, Prentice-Hall, New Jersey, 1999.
[19] R. Todeschini, V.Consonni, A.Mauri, M.Pavan, DRAGON-Software for the calculation of molecular descriptors. Version 3.0 for Windows, 2003.
[20] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley–Longman, Reading, MA, USA, 2000.
[21] S. Riahi, E. Pourbasheer, R. Dinarvand, M.R. Ganjali, P. Norouzi, Exploring QSARs for antiviral activity of 4-alkylamino-6-(2-hydroxyethyl)-2- methylthiopyrimidines by support vector machine, Chem. Biol. Drug Des, 2008, 72, 205-216.
[22] J.A.d. Sousa, M.C. Hemmer, J. Casteiger, Prediction of H-1 NMR chemical shifts using neural networks, Anal. Chem., 2002, 74, 80-93.
[23] U. Depczynski, V.J. Frost, K. Molt, Genetic algorithms applied to the selection of factors in principal component regression, Anal. Chim. Acta., 2000, 420, 217-227.
[24] S. Wold, M. Sjostrom, L. Eriksson, PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Syst., 2001, 58, 109-130.
[25] B.M. Nicolai, K.I. Theron, J. Lammertyn, Chemom. Intell. Lab. Syst.,2007, 85, 243–252
[26] R. Rosipal, L.J. Trejo, J. Mach. Learning Res.,2001, 2, 97-123.
[27] J. Zupan, J. Gasteiger, Neural Network in Chemistry and Drug Design, Wiley–VCH, Weinheim, 1999.
[28] S. Kara, A.S. Güven, M. Okandan, F. Dirgenali, Comput. Biol. Med., 2006, 36, 473–483
[29] A. Yasri, D. Hartsough, J. Chem. Inf. Comput. Sci., 2001, 41, 1218-1227
[30] S. Kara, M. Okandan, Pattern Recognit,2007,40, 2967 – 2973
[31] M. Salvi, D. Dazzi, I. Pelistri, F. Neri, J.R. Wall, Ophthalmology, 2002, 109, 1703-1708.
[32] K.Kim, J.M.Lee, I.B. Lee, Chemom. Intell. Lab. Syst., 2005, 79, 22-30.
[33] J. Acevedo-Martınez, J.C. Escalona-Arranz, A. Villar-Rojas, F. Tellez-Palmero, R. Perez-Roses, L. Gonzalez, R. Carrasco-Velar, J. Chromatogr. A., 2006, 1102, 238-244.
[34] A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, J. Markopoulos, O. Igglessi-Markopoulou, Bioorg. Med. Chem., 2006, 14, 6686-6694.
[35] A. Golbraikh, A. Tropsha, J. Mol. Graphics Modell, 2002, 20, 269-276.
[36] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany, 2000. | ||
آمار تعداد مشاهده مقاله: 2,825 تعداد دریافت فایل اصل مقاله: 2,201 |