
تعداد نشریات | 41 |
تعداد شمارهها | 1,190 |
تعداد مقالات | 10,230 |
تعداد مشاهده مقاله | 19,282,811 |
تعداد دریافت فایل اصل مقاله | 13,325,352 |
A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers | ||
Control and Optimization in Applied Mathematics | ||
مقاله 6، دوره 3، شماره 1، مهر 2018، صفحه 87-108 اصل مقاله (611.68 K) | ||
نوع مقاله: Applied Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2019.40779.1083 | ||
نویسندگان | ||
Ghasem Ahmadi* 1؛ Mohammad Teshnehlab2؛ Fahimeh Soltanian3 | ||
1Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran | ||
2Department of Control Engineering, K.N. Toosi University of Technology, Tehran, Iran | ||
3Department of Mathematics, Payame Noor University (PNU), P.O. Box, 19395-3697, Tehran, Iran | ||
چکیده | ||
o enhance the performances of rough-neural networks (R-NNs) in the system identification, on the base of emotional learning, a new stable learning algorithm is developed for them. This algorithm facilitates the error convergence by increasing the memory depth of R-NNs. To this end, an emotional signal as a linear combination of identification error and its differences is used to achieve the learning laws. In addition, the error convergence and the boundedness of predictions and parameters of the model are proved. To illustrate the efficiency of proposed algorithm, some nonlinear systems including the cement rotary kiln are identified using this method and the results are compared with some other models. | ||
کلیدواژهها | ||
Rough-neural network؛ System identification؛ Emotional learning؛ Lyapunov stability theory | ||
عنوان مقاله [English] | ||
یادگیری عاطفی بر مبنای لیاپانوف بهنگام از مرتبه بالاتر برای شناساگرهای راف-عصبی | ||
نویسندگان [English] | ||
قاسم احمدی1؛ محمد تشنه لب2؛ فهیمه سلطانیان3 | ||
1استادیار، گروه ریاضی، دانشگاه پیام نور، صندوق پستی ۱۹۳۹۵-۳۶۹۷ ، تهران، ایران | ||
2گروه مهندسی کنترل، دانشگاه خواجه نصیرالدین طوسی | ||
3استادیار، گروه ریاضی، دانشگاه پیام نور، ص. پ. 3697-19395، تهران، ایران | ||
چکیده [English] | ||
به منظور بالا بردن کارایی شبکههای راف-عصبی در شناسایی سیستم، یک الگوریتم یادگیری پایدار بر مبنای یادگیری عاطفی برای آنها ارائه شده است. این الگوریتم با افزودن به عمق حافظه شبکههای راف-عصبی همگرایی خطا را آسان میکند. برای این منظور، از یک سیگنال عاطفی که ترکیبی خطی از خطای شناسایی و تفاضلات آن میباشد، برای دستیاب1ی به قوانین یادگیری استفاده شده است. علاوه بر این، همگرایی خطا و کرانداری پیشبینیها و پارامترهای مدل اثبات شده است. برای نشان دادن کارآمدی الگوریتم پیشنهادی، چند سیستم غیرخطی شامل کوره دوار سیمان با استفاده از این روش شناسایی شده و نتایج با چند مدل دیگر مقایسه شده است. | ||
کلیدواژهها [English] | ||
شبکه راف-عصبی, شناسایی سیستم, یادگیری عاطفی, نظریه پایداری لیاپانوف | ||
مراجع | ||
bibitem{affonso} Affonso C., Sassi R.J., Barreirosa R. (2015). ``Biological image classification using rough-fuzzy artificial neural network", Expert Systems with Applications, 42, 9482--9488. bibitem{ahmadi} Ahmadi G., Teshnehlab M. (2017). ``Designing and implementation of stable sinusoidal rough-neural identifier", IEEE Trans. Neural Netw. Learn. Syst., 28, 1774--1786. bibitem{ahmadi2} Ahmadi G., Teshnehlab M. (2017). ``System identification using rough extreme learning machines", In Proceedings of the 9th National Conference on Mathematics of Payame Noor University, Kerman, 811--815. bibitem{ahmadi1} Ahmadi G., Teshnehlab M., Soltanian, F. (2018). ``Identification of discrete dynamic nonlinear systems using stable sinusoidal rough-neural networks with online emotional learning", In Proceedings of the 6th Iranian Joint Congress on Fuzzy and Intelligent Systems, Kerman, 20--26. bibitem{alehasher} Alehasher S., Teshnehlab M. (2012). ``Implementation of rough neural networks with probabilistic learning for nonlinear system identification", J. Control, 6, 41--50. bibitem{balkenius} Balkenius C., Mor'{e}n J. (2001). ``Emotional learning: a computational model of amyg", Cybernetics and Systems, 32, 611--636. bibitem{ding} Ding S., Ma G., Shi Z. (2014). ``A rough RBF neural network based on weighted regularized extreme learning machine", Neural Processing Letters, 40, 245--260. bibitem{el-saify} El-Saify M., El-Garhy A., El-Sheikh G. (2017). ``Brain emotional learning based intelligent decoupler for nonlinear multi-input multi-output distillation columns", Mathematical Problems in Engineering, 2017, 1--13. bibitem{hassan2017} Hassan, Y. (2017). ``Deep learning architecture using rough sets and rough neural networks", Kybernetes, 46, 693--705. bibitem{hassan2018} Hassan Y. (2018). ``Rough set machine translation using deep structure and transfer learning", Journal of Intelligent and Fuzzy Systems, 34, 4149--4159. bibitem{hassanien} Hassanien A., Slezak D. (2006). ``Rough-neural intelligent approach for image classification: A case of patients with suspected breast cancer", International Journal of Hybrid Intelligent Systems, 3, 205--218. bibitem{ioannou} Ioannou P., Sun J. (1996). Robust adaptive control, Prentice Hall, New Jersey. bibitem{isermann} Isermann R., Munchhof M. (2011). ``Identification of dynamic systems", Springer, Berlin. bibitem{janay} Janakiraman V., Nguyen X., Assanis D. (2013). ``A lyapunov based stable online learning algorithm for nonlinear dynamical systems using extreme learning machines", In International Joint Conference on Neural Networks, Dallas, TX, USA. bibitem{kreyszig} Kreyszig E. (1978). ``Introductory functional analysis with applications", John Wiley and Sons, New York. bibitem{liao} Liao H., Ding S., Wang M., Ma G. (2016). ``An overview on rough neural networks", Neural Computing and Applications, 27, 1805--1816. bibitem{lingras} Lingras P. (1996). ``Rough neural networks", In Proceedings of the 6th international conference on information processing and management of uncertainty (IPMU), Granada, 1445--1450. bibitem{lingrasb} Lingras P. (2001). ``Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing", neurocomputing, 36, 29--44. bibitem{lotfi2014a} Lotfi E., Akbarzadeh-T M. (2014). ``Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices", Neurocomputing, 126, 188--196. bibitem{lotfi2014c} Lotfi E., Setayeshi S., Taimory S. (2014). ``A neural basis computational model of emotional brain for online visual object recognition", Applied Artificial Intelligence, 28, 814--834. bibitem{lucas} Lucas C., Abbaspour A., Gholipour A., Araabi B., Fatourechi M. (2003). ``Enhancing the performance of neurofuzzy predictors by emotional learning algorithm", Informatica, 27, 137--145. bibitem{lucass} Lucas C., Shahmirzadi D., Sheikholeslami N. (2004). ``Introducing BELBIC: brain emotional learning based intelligent controller", Intelligent Automation and Soft Computing, 10, 11--21. bibitem{man} Man Z., Wu H., Liu S., Yu X. (2006). ``A new adaptive backpropagation algorithm based on lyapunov stability theory for neural networks", IEEE Trans. neural netw., 17, 1580--1591. bibitem{mardani} Mardani A., Nilashi M., Antucheviciene J., Tavana M., Bausys R., Ibrahim O. (2017). ``Recent fuzzy generalisations of rough sets theory: A systematic review and methodological critique of the literature", Complexity, 2017, 1--33. %doi:10.1155/2017/1608147. bibitem{mehrabian} Mehrabian A., Lucas C., Roshanian J. (2006). ``Aerospace launch vehicle control: an intelligent adaptive approach", Aerospace Science and Technology, 10, 149--155. bibitem{narendra} Narendra K., Parthasarathy K. (1990). ``Identification and control of dynamical systems using neural networks", IEEE Transactions on Neural Networks, 1, 4--27. %doi:10.1109/72.80202. bibitem{nelles} Nelles O. (2001). ``Nonlinear system identification: From classical approaches to neural networks and fuzzy models", Springer-Verlag, Berlin. bibitem{nguyen} Nguyen H., Skowron A. (2013). ``Rough sets: from rudiments to challenges", In Rough sets and intelligent systems – Professor Zdzisław Pawlak in memoriam, 75--173. Berlin volume 1. bibitem{park} Park I.K., Choi, G.S. (2015). ``Rough set approach for clustering categorical data using information-theoretic dependency measure", Information Systems, 48, 289--295. bibitem{parsapoor} Parsapoor M., Bilstrup U. (2013). ``Chaotic time series prediction using brain emotional learning-based recurrent fuzzy system (belrfs)", Int. J. Reasoning-based Intelligent Systems, 5, 113--126. %doi:10.1504/IJRIS.2013.057273. bibitem{patt} Pattaraintakorn P., Cercone N., Naruedomkul K. (2006). ``Rule learning: ordinal prediction based on rough sets and softcomputing. Applied Mathematics Letters", An International Journal of Rapid Publication, 19, 1300--1307. bibitem{paw} Pawlack Z. (1982). ``Rough sets", International Journal of Computer and Information Sciences, 11, 341--356. bibitem{pedrycz} Pedrycz W., Skowron A., Kreinovich V. (2008). ``Handbook of granular computing", England, John Wiley and Sons. bibitem{rouhani} Rouhani H., Jalili M., Araabi B., Eppler W., Lucas C. (2007). ``Brain emotional learning based intelligent controller applied to neurofuzzy model of micro-heat exchanger", Expert Systems with Applications, 32, 911--918. bibitem{sadeghian} Sadeghian M., Fatehi A. (2011). ``Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique", J. Process Control, 21, 302--308. bibitem{sarmadi} Sarmadi N., Teshnehlab M. (2002). ``Short-term weather forecasting using neurofuzzy approach", In Proceedings of the 20th IASTED International Multi-Conference on Modeling, Identification and Control (MIC), Innsbruck, Austria. bibitem{sharifi} Sharifi A., Shoorehdeli M. A., Teshnehlab M. (2012). ``Identification of cement rotary kiln using hierarchical wavelet fuzzy inference system", J. Franklin Inst., 349, 162--183. bibitem{tay} Tay F., Shen, L. (2002). ``Economic and financial prediction using rough sets model", European Journal of Operational Research, 141, 641--659. bibitem{yama} Yamaguchi D., Katayama F., Takahashi M., Arai M., Mackin K. (2008). ``The medical diagnostic support system using extended rough neural network and multiagent", Artificial life and robotics, 13, 184--187. %doi:10.1007/s10015-008-0543-3. bibitem{yan} Yan L., Sundararajan N., Saratchandran P. (2000). ``Analysis of minimal radial basis function network algorithm for real-time identification of nonlinear dynamic systems", IEE Proceedings-Control Theory and Applications, 147, 476--484. bibitem{ye} Ye M., Wu X., Hu X., Hu D. (2013). ``Anonymizing classification data using rough set theory", Knowledge-Based Systems, 43, 82--94. bibitem{zhang} Zhang H.Y., Yang S.Y. (2017). ``Feature selection and approximate reasoning of large-scale set-valued decision tables based on $alpha$-dominance-based quantitative rough sets", Information Sciences, 378, 328--347. | ||
آمار تعداد مشاهده مقاله: 539 تعداد دریافت فایل اصل مقاله: 351 |