
تعداد نشریات | 41 |
تعداد شمارهها | 1,166 |
تعداد مقالات | 10,055 |
تعداد مشاهده مقاله | 18,795,760 |
تعداد دریافت فایل اصل مقاله | 13,048,099 |
Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems | ||
Control and Optimization in Applied Mathematics | ||
دوره 4، شماره 1، مهر 2019، صفحه 83-101 اصل مقاله (469.62 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2020.51511.1137 | ||
نویسنده | ||
Ghasem Ahmadi* | ||
Payame Noor University (PNU), Tehran, Iran | ||
چکیده | ||
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global asymptotically convergence of the proposed learning algorithm using the Lyapunov stability theory. Then, we use the proposed methodology to identify the chaotic systems of Duffing's oscillator and Lorentz system. Simulation results show the efficiency of the proposed model. | ||
کلیدواژهها | ||
System identification؛ Extreme learning machine؛ Rough-neural network؛ Rough extreme learning machine؛ Lyapunov stability theory | ||
عنوان مقاله [English] | ||
ماشینهای یادگیری حدی راف پایدار برای شناسایی سیستمهای غیرخطی زمان-پیوسته غیرقطعی | ||
نویسندگان [English] | ||
قاسم احمدی | ||
دانشگاه پیام نور، تهران، ایران | ||
چکیده [English] | ||
ماشینهای یادگیری حدی راف شبکههای راف-عصبی با یک لایه پنهان هستند که در آنها پارامترهای بین ورودیها و نورونهای پنهان به صورت تصادفی انتخاب میشوند و هرگز به روز نمیشوند. در این مقاله، ماشینهای یادگیری حدی راف با یک الگوریتم یادگیری برخط پایدار را برای شناسایی سیستمهای غیرخطی زمان-پیوسته در حضور نویزها و عدمقطعیتها پیشنهاد میکنیم و با استفاده از نظریه پایداری لیاپانوف، همگرایی مجانبی سراسری الگوریتم یادگیری پیشنهاد شده را اثبات میکنیم. سپس، از روش پیشنهاد شده برای شناسایی سیستمهای آشوبی نوسانگر دافینگ و سیستم لورنز بهره میگیریم. نتایج شبیهسازی کارآمدی مدل پیشنهادی را نشان میدهد. | ||
کلیدواژهها [English] | ||
شناسایی سیستم, ماشین یادگیری حدی, شبکه راف-عصبی, ماشین یادگیری حدی راف, نظریه پایداری لیاپانوف | ||
مراجع | ||
bibitem{abdollahi}
Abdollahi F., Talebi A., Patel R. (2006).
``Stable identification of nonlinear systems using neural networks: Theory and experiments", IEEE/ASME Transactions on Mechatronics, 11(4), 488-495.
bibitem{ahmadi}
Ahmadi G., Teshnehlab M. (2016). ``Designing and implementation of stable sinusoidal rough-neural identifier", IEEE Transactions on Neural Networks and Learning Systems, 28(8), 1774-1786.
bibitem{ahmadi3}
Ahmadi G., Teshnehlab M. (2020). ``Identification of multiple input-multiple output non-linear system cement rotary kiln using stochastic gradient-based rough-neural network", Journal of AI and Data Mining, 8(3), 417-425.
bibitem{ahmadi2}
Ahmadi G., Teshnehlab M., Soltanian F. (2018). ``A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers", Control and Optimization in Applied Mathematics (COAM), 3(1), 87-108.
bibitem{alehasher}
Alehasher S., Teshnehlab M. (2012). ``Implementation of
rough neural networks with probabilistic learning for nonlinear system identification",
J. Control 6(1), 41-50.
bibitem{cellier}
Cellier F. E. (1991). ``Continuous system modelling", Springer-Verlag, New York.
bibitem{coca}
Coca D., Billings S. (1997). ``Continuous-time system identification
for linear and nonlinear systems using wavelet decompositions", International Journal of
Biforcation and Chaos 7(1), 87-96.
bibitem{feng}
Feng L., Xu S., Wang F., Liu S., Qiao H. (2019). ``Rough extreme learning
machine: A new classification method based on uncertainty measure", Neurocomputing, 325, 269-282.
bibitem{garnier}
Garnier H., Wang L. (2008). ``Identification of continuous-time models from sampled data", Springer-Verlag, London.
bibitem{hassan}
Hassan Y. (2014). ``Rough neural networks in adapting cellular automata rule
for reducing image noise", International Journal of Computer, Information, Systems and
Control Engineering, 8(1), 71-74.
bibitem{ella}
Hassanien A., Slezak D. (2006). ``Rough-neural intelligent approach for image classification: A case of patients with suspected breast cancer", International Journal of Hybrid Intelligent Systems, 3, 205-218.
bibitem{huang2006}
Huang G. B., Zhu Q.-Y., Siew C.-K. (2006). ``Extreme learning machine: Theory and applications", Neurocomputing, 70, 489-501.
bibitem{huang2012}
Huang G. B., Zhou H., Ding X., Zhang R. (2012). ``Extreme learning machine for regression and
multiclass classification", IEEE Transaction on Systems, Man, and Cybernetics—Part B: Cybernetics, 42(2), 513-529.
bibitem{hykin}
{Hykin S. (1998). ``Neural networks: A comprehensive foundation", Prentice Hall International, Canada.}
bibitem{Ioannou}
Ioannou P., Sun J. (1996). ``Robust adaptive control", Prentice Hall, New Jersey.
bibitem{jahangir}
Jahangir H., Golkar M. A., Alhameli F., Mazouz A.,
Ahmadian A., Elkamel A. (2020). ``Short-term wind speed forecasting framework based on stacked denoising
auto-encoders with rough ANN", Sustainable Energy Technologies and Assessments, 38, 100601.
bibitem{jahangir2}
Jahangir H., Tayarani H., Baghali S., Ahmadian A., Elkamel A., Golkar M. A. (2020). ``A novel electricity price forecasting approach based on dimension reduction
strategy and rough artificial neural networks", IEEE Transactions on Industrial Informatics, 16(4), 2369-2381.
bibitem{janakiraman}
Janakiraman V. M., Assanis D. (2012). ``Lyapunov method based online
identification of nonlinear systems using extreme learning machines",
Computing Research Repository (CoRR):1211.1441, pp 1-8.
bibitem{vijay3}
Janakiraman V. M., Nguyen X., Assanis D., (2016). ``Stochastic gradient based extreme
learning machines for stable online learning of advanced combustion engines", Neurocomputing, 177, 304-316.
bibitem{lamamra}
Lamamra K., Vaidyanathan S.,
Azar A. T., Ben Salah C. (2017).
``Chaotic system modelling using a neural
network with optimized structure", in:
Azar A. T. et al. (eds.), Fractional order control and synchronization
of chaotic systems, Studies in Computational Intelligence 688, Springer International Publishing AG.
bibitem{lingras}
Lingras P. (1996). ``Rough neural networks", in: Proceedings of the 6th international conference on information processing and management of uncertainty (IPMU),
Granada, 1445-1450.
bibitem{GPLiu}
Liu G., Kadirkamanathan V., Billings S.
(1994). ``Stable sequential identification of continuous nonlinear dynamical systems by
growing RBF networks", PhD thesis, Research Report No. 547, Depatment of Automatic
Control and System Engineering, University of Sheffild, UK.
bibitem{narendra}
Narendra K., Parthasarathy K. (1990). ``Identification
and control of dynamical systems using neural networks", IEEE Trans. Neural Networks,
1(1), 4-27.
bibitem{nelles}
Nelles O. (2001). ``Nonlinear system identification: From classical approaches to
neural networks and fuzzy models", Springer-Verlag, Berlin.
bibitem{paw}
Pawlack Z. (1982). ``Rough sets", International Journal of Computer and Information Sciences, 11(5), 341-356.
bibitem{poznyak}
Poznyak A. S., Yu W., Sanchez E. N. (1982). ``Identification and control of unknown chaotic
systems via dynamic neural networks", IEEE Transactions on Circuits and Systems—I: Fundamental Theories and Applications, 46(12).
bibitem{rao}
Rao G., Unbehauen H. (2006). ``Identification of continuous-time
systems", IEE Proc.-Control Theory Appl., 153(2), 185-220.
bibitem{ren} Ren X., Rad A., Chan P., Lo W. (2003). ``Identification and control of continuous-time nonlinear systems via dynamic neural networks",
IEEE Transactions on Industrial Electronics, 50(3), 478-486.
bibitem{pan}
Pan S. T., Lai C. C. (2008). ``Identification of chaotic systems by neural network with
hybrid learning algorithm",
Chaos, Solitons and Fractals, 37, 233-244.
bibitem{wang}
Wang Z., Li M., Wang H., Jiang H., Yao Y., Zhang H., Xin J. (2019). ``Breast cancer detection using extreme learning machine
based on feature fusion with CNN deep features", IEEE Access, 105146-105158.
bibitem{yama}
Yamaguchi
D., Katayama F., Takahashi M., Arai M., Mackin K. (2008). ``The medical diagnostic
support system using extended rough neural network and multiagent", Artificial Life and
Robotics, 13(1), 184-187.
bibitem{zhang}
Zhang B., Billings S. (2015). ``Identification of continuous-time non-
linear systems: The nonlinear difference equation with moving average noise (ndema)
framework", Mechanical Systems and Signal Processing, 60, 810-835. | ||
آمار تعداد مشاهده مقاله: 342 تعداد دریافت فایل اصل مقاله: 297 |