
تعداد نشریات | 41 |
تعداد شمارهها | 1,164 |
تعداد مقالات | 10,047 |
تعداد مشاهده مقاله | 18,779,074 |
تعداد دریافت فایل اصل مقاله | 13,034,403 |
Copper Nanoparticles Stabilized By Reduced Graphene Oxide as a Probe For Flectrochemical Determination of Acyclovir | ||
Iranian Journal of Analytical Chemistry | ||
مقاله 2، دوره 7، شماره 2 - شماره پیاپی 14، آذر 2020، صفحه 12-21 اصل مقاله (1.06 M) | ||
نوع مقاله: Full research article | ||
شناسه دیجیتال (DOI): 10.30473/ijac.2020.54889.1172 | ||
نویسندگان | ||
Azar Sa'adi1؛ Javad Shabani-Shayeh2؛ Zarrin Eshaghi* 1 | ||
1Department of Chemistry, Payame Noor University, P.O. Box 19395-4697,Tehran, Iran | ||
2Protein Research Center, Shahid Beheshti University, Tehran, Iran | ||
چکیده | ||
The electro-oxidation of acyclovir (ACV) was studied using synthesized Cu nanoparticles stabilized by reduced graphene oxide (Cu/RGO) modified carbon paste electrodes. In this work, leaf extract of rosemary (Rosmarinus officinalis) used as a reducing and stabilizing agent for biosynthesis of copper nanoparticles. The Cu/RGO nanocomposite was authorized by X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) spectroscopy, [1]Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). In an alkaline solution, the electrochemical performance of Cu/RGO was checked and afterward utilized to make a modified carbon paste electrode to study the electrocatalytic oxidation of acyclovir, compared to copper modifier only. Two used methods for surveying of the oxidation reaction were cyclic voltammetry and chronoamperometry. The limit of detection for modified electrode was obtained 0.63 µM. Furthermore, the rate constant of the electrocatalytic oxidation of acyclovir was (1.80 ± 0.03) ×105 cm3mol−1s−1 and the electron-transfer coefficient was (4.00 ± 0.05) ×10–6 Cm2 s–1. | ||
کلیدواژهها | ||
Copper Nanoparticles؛ Reduced Graphene Oxide؛ Rosemary Extract؛ Electrocatalysis؛ Modified Carbon Paste Electrode؛ Acyclovir | ||
عنوان مقاله [English] | ||
نانو ذرات مس تثبیت شده بر روی اکسید گرافن احیا شده به عنوان یک ردیاب برای اندازه گیری الکتروشیمیایی آسیکلوویر | ||
نویسندگان [English] | ||
آذر سعدی1؛ جواد شعبانی شایه2؛ زرین اسحاقی1 | ||
1گروه شیمی، دانشگاه پیام نور، تهران، ایران | ||
2مرکز تحقیقات پروتئین دانشگاه شهید بهشتی، تهران، ایران | ||
چکیده [English] | ||
الکترواکسیداسیون آسیکلوویر با استفاده از الکترودخمیری کربن اصلاح شده با نانو ذرات مس سنتزی تثبیت شده بر روی اکسیدگرافن احیاشده (Cu/RGO) مطالعه شد. در این مطالعه، از عصاره برگ رزماری به عنوان عامل کاهنده و تثبیت کننده برای بیوسنتز نانوذرات مس استفاده شد. برای شناسایی ساختار نانوذرات و نانو کامپوزیت سنتز شده از XRD، FT-IR،SEM و TEMاستفاده شد. عملکرد الکتروشیمیایی Cu/RGO در محلول قلیایی بررسی شد و پس از آن برای اصلاح الکترود خمیری کربن برای مطالعه اکسیداسیون الکتروکاتالیتیکی آسیکلوویر استفاده گردید و با اصلاحگر مس به تنهایی مقایسه شد. از روش های ولتامتری چرخه ای و کرونوآمپرومتری برای مطالعه مکانیسم اکسیداسیون و تعیین ثابت سرعت الکتروکاتالیتیکی و ضریب نفوذ آسیکلوویر استفاده شد. حد تشخیص الکترود اصلاح شده 63/0 میکرومولار بود. علاوه برآن، ثابت سرعت اکسیداسیون الکتروکاتالیتیکی آسیکلوویر cm3 mol-1s-1105× (03/0 ± 8/1) و ضریب انتقال الکترون، cm2s-16-10× (05/0 ± 4) محاسبه شد. | ||
کلیدواژهها [English] | ||
نانو ذره مس, اکسید گرافن احیا شده, عصاره رزماری, الکتروکاتالیز, الکترود خمیری کربن اصلاح شده, آسیکلوویر | ||
مراجع | ||
[1] A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.
[2] J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead and P.L. McEuen, Electromechanical Resonators from Graphene Sheets, Science 315 (2007) 490-493.
[3] S. Park and R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4 (2009) 217-224.
[4] B.F.Machado and P. Serp, Graphene-based materials for catalysis, Catal. Sci. Technol. 2 (2012) 54-75.
[5] P. Zijlstra and M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications, Rep. Prog. Phys.74 (2011) 106401.
[6] B.M. Munoz-Flores, B. I. Kharisov, V. M. Jimenez-Perez, P.E. Martinez and S.T. Lopez Recent Advances in the Synthesis and Main Applications of Metallic Nanoalloys, Ind. Eng. Chem. Res. 50 (2011) 7705-77021.
[7] S.J. Guo and E.K. Wang, Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors, Nano Today 6 (2011) 240-264.
[8] G. Thirumurugan and M.D. Dhanaraju, Novel Biogenic Metal Nanoparticles for Pharmaceutical Applications, Adv. Sci. Lett. 4 (2011) 339-348.
[9] E. Comini and G. Sberveglieri, Metal oxide nanowires as chemical sensors, Mater. Today, 13 (2010) 28.
[10] A. Kolmakov and M. Moskovits, Chemical sensing and catalysis by one Dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151-180.
[11] R. Muszynski, R.B. Seger and P.V. Kamat, Decorating Graphene Sheets with Gold Nanoparticles, J. Phys. Chem. C 112 (2008) 5263-5266.
[12] P.V. Kamat, Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, J. Phys. Chem. Lett. 1 (2010) 520-527.
[13] B. Seger and P.V. Kamat, Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells, J. Phys. Chem. C 113 (2009) 7990.
[14] Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner and D. Chen, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets, ACS Nano 4 (2010) 1227-1233.
[15] I.V. Lightcap, T.H. Kosel and P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide, Nano Lett. 10(2010) 577-583.
[16] Si. Yongchao and T.S. Edward, Exfoliated Graphene Separated by Platinum Nanoparticles, Chem. Mater. 20 (2008) 6792-6797.
[17] M. Nasrollahzadeh, F. Babaei, P. Fakhri and B. Jaleh, Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites, RSC Adv. 5 (2015)10782-10789.
[18] M. Bagherzadeh and A. Farahbakhsh, in: A. Tiwari, M. Syvajarvi (Eds.), Surface functionalization of graphene, in Graphene Materials: Fundamentals and Emerging Applications, Wiley, New York (2015).
[19] J. ShabaniShayeh, A. Ehsani, M.R. Ganjalia, P. Norouzian and B. Jalehda, Conductive polymer/reduced graphene oxide/Au nanoparticles as efficient composite materials in electrochemical supercapacitors, Appl. Surf. Sci. 353 (2015) 594-599.
[20] Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi and T. Uruga, Bioreductive deposition of platinum nanoparticles on the bacterium shewanella algae, J. Biotechnol. 128 (2007) 648-653.
[21] M. Rai, A. Yadav and A. Cade, Current [corrected] trends in phytosynthesis of metal nanoparticles, Crit. Rev. Biotechnol. 28 (2008) 277-284.
[22] E.S. Abdel-Halim, M.H. El-Rafie and S.S. Al-Deyab, Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles, Carbohydr. Polym. 85 (2011) 692-697.
[23] A.R. Jasbi, Chemistry and biological activity of secondary metabolites in Euphorbia from Iran, Phytochem. 67 (2006) 1977-1984.
[24] S.P. Dubey, M. Lahtinen and M. Sillanpa, Tansy fruit mediated greener synthesis of silver and gold nanoparticles Process, Biochem. 45 (2010) 1065-1071.
[25] G. Zhan, J. Huang, M. Du, I. Abdul-Rauf, Y. Ma and Q. Li, Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract, Mat. Lett. 65 (2011) 2989-2991.
[26] X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao and B. Shi, One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with the tunable structure using plant tannin as reductant and stabilizer, Green Chem. 13 (2011) 950-957.
[27] A. Rohi, K. Karimian and H. Heli, Nanostructured materials in electroanalysis of pharmaceuticals, Anal. Biochem. 497 (2016) 39-47.
[28] S. Skrzypek, W. Ciesielski and S. Yilmaz, Voltammetric study of aciclovir using controlled grow mercury drop electrode, Chem. Anal. 52 (2007) 1071-1079.
[29] A.A. Castro, A.I.P. Cordoves and P.A.M. Farias, Determination of the antiretroviral drug acyclovir in diluted alkaline electrolyte by adsorptive stripping voltammetry at the mercury film electrode, Anal. Chem. Insights 8 (2013) 21-28.
[30] M. Sadikoglu, G. Saglikoglu, S. Yagmur, E. Orta and S. Yilmaz, Voltammetric determination of acyclovir in human urine using ultra trace graphite and glassy carbon electrodes, Curr. Anal. Chem. 7 (2011) 130-135.
[31] H. Heli, F. Pourbahman and N. Sattarahmady, Nanoporous Nickel Microspheres: Synthesis and Application for the Electrocatalytic Oxidation and Determination of Acyclovir, Anal. Sci. 28 (2012) 503-510.
[32] A. Tajiki and M. Abdouss, Synthesis and characterization of graphene oxide nano-sheets for effective removal of copper phthalocyanine from aqueous media, Iran. J. Chem. Chem. Eng. (IJCCE), 36 (2017) 1-9.
[33] Z. Xu, Y. Zhang, X. Qian, J. Shi, L. Chen, B. Li, J. Niu, L. Liu, One-step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal, Appl. Surf. Sci. 316 (2014) 308–314.
[34] Z. Xiong, L.L. Zhang, J. Ma, X.S. Zhao, Photocatalytic degradation of dyes over graphene- gold nanocomposites under visible light irradiation Chem. Commun. 46 (2010) 6099-6101.
[35] Omar H. Abd-Elkader, N.M. Derza, Synthesis and characterization of new copper-based nanocomposite, Int. J. Electrochem.Sci. 8 (2013) 8614-8622.
[36] Marioli, J. M.; Kuwana, T.; Electrochemical characterization of carbohydrate oxidation at copper electrodes, Electrochim. Acta, 37 (1992) 1187-1197.
[37] K. Kano, M. Torimura, Y.Esaka, M. Goto, T. Ueda, Electrocatalytic oxidation of carbohydrates at copper (II)-modified electrodes and its application to flow-through detection, J. Electroanal. Chem. 372 (1994) 137-143.
[38] CH. Pyun, SM. Park, In Situ Spectro-electrochemical Studies on Anodic Oxidation of Copper in Alkaline Solution, J. Electrochem. Soc. 133 (1986) 2024-2030.
[39] J. M. M. Droog, C. A. Alderliesten, P. T. Alserliesten, G. A. Gootsma, Initial stages of anodic oxidation of poly-crystalline copper electrodes in alkaline solution, J. Electroanal. Chem. 111 (1980) 61-70.
[40] F. Wang, XX. Chen,SH. Hu, Studies on electrochemical behavior of acyclovir and its voltammetric determination with nano-structured film electrode, Anal. Chim. Acta 576 (2006) 17-22.
[41] M. Hajjizadeh, A. Jabbari, H. Heli, AA. Moosavi-Movahedi, Electrooxidation and determination of mefenamic acid and indomethacin using a copper electrode, Chem. Anal. 53 (2008) 429- 444.
[42] B. Miller, Split‐Ring Disk Study of the Anodic Processes at a Copper Electrode in Alkaline Solution, J. Electrochem. Soc. 116 (1969) 16750-17680.
[43] LD. Burke, MJG. Ahern, TG. Ryan, An Investigation of the Anodic Behavior of Copper and Its Anodically Produced Oxides in Aqueous Solutions of High pH, J. Electrochem. Soc. 137 (1990) 553-561.
[44] IG. Casella, M. Gatta, Anodic electrodeposition of copper oxide/hydroxide films by alkaline solutions containing cuprous cyanide ions, J. Electroanal. Chem. 494 (2000) 12-20.
[45] S. M. Abd el Haleem, B. G. Ateya, Cyclic voltammetry of copper in sodium hydroxide solutions, J. Electroanal. Chern.117 (1981) 309-319.
[46] M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes, J. Chem. Soc. 2 (1972) 1396-1403.
[47] D. Meyerstein, FM. Hawkridge, T. Kuwana, The spectro-electrochemical characterization of the electrocatalytic oxidation of Cu (II) ethylenediamine, J. Electroanal. Chem. 40 (1972) 377-384.
[48] H. Heli, M. Hajjizadeh, A. Jabbari, AA. Moosavi-Movahedi, Copper nanoparticles-modified carbon paste transducer as a biosensor for determination of acetylcholine, Biosens. Bioelectron.24 (2009) 2328-2333.
[49] H. Heli, M. Hajjizadeh, A. Jabbari, AA. Moosavi-Movahedi, Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles, Anal Biochem. 388 (2009) 81-90.
[50] H. Heli, M. Zarghan, A. Jabbari, A. Parsaei and A. A. Moosavi-Movahedi, Electrocatalytic oxidation of the antiviral drug acyclovir on a copper nanoparticles-modified carbon paste electrode, J. Solid State Electrochem. 14 (2010) 787-795.
[51] H. Heli, F. Faramarzi, A. Jabbari, A.Parsaei, A. A. Moosavi-Movahedi, Electrooxidation and determination of etidronate using copper nanoparticles and microparticles-modified carbon paste electrodes, J. Braz. Chem. Soc. 21 (2010) 16-24.
[52] KC.Honeychurch, MR. O’Donovan, JP. Hart, Voltammetricbehaviour of DNA bases at a screen-printed carbon electrode and its application to a simple and rapid voltammetric method for the determination of oxidative damage in double-stranded DNA, Biosens. Bioelectron.22 (2007) 2057-2064.
[53] E. Gonzalez-Fernandez, N. de-Los Santos-Alvarez, MJ. Lobo-Castanon, AJ. Miranda-Ordieres, P. Tunon-Blanco, Electrochemical Oxidation of Guanosine and Xanthosine at Physiological pH: Further Evidences of a Convergent Mechanism for the Oxidation of Purine Nucleosides, Electroanalysis 20 (2008) 833-839.
[54] O. Hammerich, JHP. Utley, L. Eberson, Organic electrochemistry, Marcel Dekker, New York (1991).
[55] J.C. Miller, JN. Miller, Statistics for analytical chemistry, Fourth ed., Ellis-Harwood, New York (1994) pp. 115.
[56] AJ. Bard, LR. Faulkner, Electrochemical methods, Wiley, New York (2001).
[57] J. Raoof, A. Omrani, R. Ojani, F. Monfared, Poly (N-methyl aniline)/ nickel modified carbon paste electrode as an efficient and cheap electrode for electrocatalytic oxidation of formaldehyde in alkaline medium, J. Electroanal. Chem. 633 (2009) 153-158. | ||
آمار تعداد مشاهده مقاله: 765 تعداد دریافت فایل اصل مقاله: 375 |