تعداد نشریات | 40 |
تعداد شمارهها | 1,019 |
تعداد مقالات | 8,731 |
تعداد مشاهده مقاله | 15,576,931 |
تعداد دریافت فایل اصل مقاله | 10,886,840 |
شناسایی ژنهای فیمبریایی و ژنهای مقاومت به فلوروکینولونها و بتالاکتامازهای وسیع الطیف (ESBL) در اشریشیا کلیهای جدا شده از مدفوع گاومیش در استان آذربایجانغربی | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
دوره 9، شماره 2 - شماره پیاپی 34، آبان 1399، صفحه 11-21 اصل مقاله (608.99 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2019.46145.1708 | ||
نویسندگان | ||
خالیده آذری1؛ عبدالغفار اونق* 2؛ کریم مردانی3 | ||
1دکترای تخصصی باکتریشناسی، گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، آذربایجانغربی | ||
2دانشیار میکروبیولوژی، گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، آذربایجانغربی | ||
3استاد اپیدمیولوژی گروه بهداشت و کنترل کیفی مواد غذایی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، آذربایجانغربی | ||
چکیده | ||
مطالعه حاضر با هدف شناسایی ژنهای فیمبریایی، ژنهای مقاومت به فلوروکینولونها و بتالاکتامازهای وسیعالطیف انجام شد. از تعداد 384 گاومیش از مناطق مختلف استان آذربایجانغربی و در فصول مختلف بهصورت تصادفی نمونههای مدفوع جمعآوری گردید. شناسایی باکتری اشریشیا کلی در نمونه های مدفوع با استفاده از روشهای کشت و بیوشیمیایی انجام گرفت. روش واکنش زنجیرهای پلیمراز (PCR) و با استفاده از جفت پرایمرهای اختصاصی، حضور ژنهای فیمبریایی (fimA، crl، csgA)، ژن tsh، ژنهای مقاومت به فلورکینولونها (qnrA، qnrB، qnrS) و ژنهای مقاومت به بتالاکتامازهای وسیعالطیف (blaSHV،blaTEM ، blaCTX-M-9) مشخص گردید. از 384 نمونه مدفوع جمعآوریشده از تعداد 115 (9/29 %) نمونه باکتری اشریشیا کلی شناسایی و جداسازی گردید. آلودگی به اشریشیا کلی در شمال استان بهطور معنیداری کمتر از جنوب و مرکز استان بود و اختلاف معنیداری از نظر الودگی گاومیشها به اشریشیا کلی در فصول مختلف وجود نداشت (05/0P<). فراوانی ژنهای فیمبریایی fimA، crl و csgA بهترتیب 1/79%، 1/72%، 7/74% بود و ژن tsh دارای کمترین فراوانی (2/18%) در جدایههای اشریشیا کلی بودند. در بین ژنهای مقاومت به فلورکینولونها و بتالاکتامازهای وسیع الطیف ژن qnrS دارای کمترین فراوانی (0/6%) و ژن blaTEM دارای بیشترین فراوانی (9/13%) بود. نتایج بهدستآمده در این مطالعه حضور باکتری اشریشیا کلی را در نمونههای مدفوع کمتر از یک سوم گاومیشهای نمونهبرداری شده نشان داد. ژنهای فیمبریایی تقریباً دارای فراوانی مشابهی بودند و ژنهای مقامت آنتیبیوتیکی در کمتر از 14% جدایههای اشریشیا کلی در گاومیش حضور داشتند. ارزیابی حضور ژنهای مقاومت آنتیبیوتیکی در جدایههای باکتریایی با منشأ حیوانی میتواند از نظر اپیدمیولوژیک و بهداشت عمومی اهمیت زیادی داشته باشد. | ||
کلیدواژهها | ||
اشریشیا کلی؛ ژنهای فیمبریایی؛ ژنهای مقاومت به فلورکینولون-ها؛ ژنهای مقاومت به بتالاکتامازهای وسیعالطیف؛ گاومیش | ||
عنوان مقاله [English] | ||
Identification of Fimbrial genes and floroquinolons and extended spectrum beta lactamase resistant gene in Escherichia coli isolated from buffalo in west Azerbaijan | ||
نویسندگان [English] | ||
Khalideh Azari1؛ Abdolghaffar Ownagh2؛ Karim Mardani3 | ||
1Ph. D., Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran | ||
2Associate Professor, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran | ||
3Professor, Department of Food control , Faculty of Veterinary Medicine, Urmia University, Urmia, Iran | ||
چکیده [English] | ||
The present study aimed to identify fimbria, fluroquinolone and extended-spectrum beta-lactamase (ESBLs) resistant genes in Escherichia coli isolated from buffalo feces. In this study, a number of 384 buffalo feces from different regions of west Azerbaijan and in different seasons were randomly collected. Fecal samples were cultured and E. coli were investigated using biochemical method. Polymerase chain reaction was employed to identify fimbria genes (fimA, crl and csgA), tsh gene, floroqinulone (qnrA, qnrB, qnrS) and extended-spectrum beta-lactamase (blaSHV, blaTEM, blaCTX-M) resistance genes. A number of 115 (29.9%) fecal samples were positive for E. coli. The frequency of the positive fecal for E. coli from northern region were significantly lower than central and southern regions (P<0.05). The frequency of positive fecal samples for E. coli did not differ between seasons. The frequency of fimbria genes fimA, crl and csgA were 79.1%, 72.1% and 74.7% respectively. tsh gene had the lowest frequency in E. coil isolates. Among fluroquinolone and extended-spectrum beta-lactamase resistance genes, qnrS gene had the lowest (6.0%) and blaTEM had the highest (13.9%) frequencies. The results revealed that E. coli was isolated from less than one third of fecal samples. Fimbria genes had almost similar frequencies among E. coli isolates and antibiotic resistance genes were exist in less than 14% of E. coli isolates from buffalo feces. The investigation of antibiotic resistance genes in E. coli originated from animals is of great epidemiological and public health importance. | ||
کلیدواژهها [English] | ||
Buffalo, E. coli, Extended-spectrum beta-lactamase, fimbria genes, fluroquinolone resistance genes | ||
مراجع | ||
Amabile de Campos, T.; Stehling, E.G.; Ferreira, A.; Pestana de Castro, A.F.; Brocchi, M.; Dias da Silveira, W. (2005). Adhesion properties, fimbrial expression and PCR detection of adhesin-related genes of avian Escherichia coli strains. Veterinary Microbiology; 106(3-4):275-85.
Barnhart, M.M.; Chapman, M.R. (2006). Curli biogenesis and function. Annual Review of Microbiology; 60: 131-47.
Belaaouaj, A.; Lapoumeroulie, C.; Canica, M.M.; Vedel, G.; Nevot, P.; Krishnamoorthy, R.; Paul, G. (1994). Nucleotide sequences of the genes coding for the TEM-like beta-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiology Letters; 120(1-2):75-80.
Bouchakour, M.; Zerouali, K.; Gros Claude, J.D.; Amarouch, H.; El Mdaghri, N.; Courvalin, P.; Timinouni, M. (2010). Plasmid-mediated quinolone resistance in expanded spectrum beta lactamase producing enterobacteriaceae in Morocco. Journal of Infection in Developing Countries; 4(12):779-803.
Coque, T.M.; Oliver, A.; Perez-Diaz, J.C.; Baquero, F.; Canton, R. (2002). Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum beta-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital (Madrid, 1989 to 2000). Antimicrobial Agents and Chemotherapy; 46(2):500-10.
Hakim, A.S.; Omara, S.T.; Syame, S.M.; Fouad, E.A. (2017). Serotyping, antibiotic susceptibility, and virulence genes screening of Escherichia coli isolates obtained from diarrheic buffalo calves in Egyptian farms. Veterinary World; 10(7): 769-773.
Izzo, M.; Kirkland, P.; Mohler, V.; Perkins, N.; Gunn, A.; House J. (2011). Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Australian Veterinary Journal; 89(5):167-173.
Johnson, J.R.; Russo, T.A. (2005). Molecular epidemiology of extra intestinal pathogenic (uropathogenic) Escherichia coli. International Journal of Medical Microbiology; 295(6): 383-404.
Jorgensen, J.H.; Pfaller, M.A.; Carroll, K.C. (2015). Manual of clinical microbiology. American Society for Microbiology, Washington, DC; ASM Press; 2: 137-166
Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology (2):123.
Karah, N.; Poirel, L.; Bengtsson, S.; Sundqvist, M.; Kahlmeter, G.; Nordmann, P.; Sundsfjord, A.; Samuelsen, O. (2010). Plasmid-mediated quinolone resistance determinants qnr and aac (6')-Ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. Diagnostic Microbiology and Infectious Disease; 66(4): 425-31.
Köhler, C-D.; Dobrindt, U. (2011). What defines extra intestinal pathogenic Escherichia coli? International Journal of Medical Microbiology; 301(8): 642-647.
Kolenda, R.; Burdukiewicz, M.; Schierack, P. (2015). A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Frontiers in Cellular and Infection Microbiology; 23: 1-6
Majalija, S.; Segal, H.; Ejobi, F.; Elisha, B.G. (2008). Shiga toxin gene-containing Escherichia coli from cattle and diarrheic children in the pastoral systems of southwestern Uganda. Journal of Clinical Microbiology; 46(1): 352-4.
Marc, D.; Dho-Moulin, M. (1996). Analysis of the fim cluster of an avian O2 strain of Escherichia coli: serogroup-specific sites within fimA and nucleotide sequence of fimI. Journal of Medical Microbiology; 44(6): 444-452.
Maurer, J.J.; Brown, T.P.; Steffens, W.L.; Thayer, S.G. (1998). The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Diseases; 42(1):106-18.
Nakhaei Moghaddam, M.; Forghanifard, M.M.; Moshrefi, S. (2012). Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum beta-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. Iranian Journal of Basic Medical Sciences; 15(3):833-839.
Olowe, O.A.; Adewumi, O.; Odewale, G.; Ojurongbe, O.; Adefioye, O.J. (2015). Phenotypic and Molecular Characterisation of Extended-Spectrum Beta-Lactamase Producing Escherichia coli Obtained from Animal Fecal Samples in Ado Ekiti, Nigeria. Journal of Environmental and Public Health; 2: 1-7
Ooka, T.; Terajima, J.; Kusumoto, M.; Iguchi, A.; Kurokawa, K.; Ogura, Y.; Asadulghani, M.; Nakayama, K.; Murase, K.; Ohnishi, M.; et al. (2009). Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains. Journal of Clinical Microbiology; 47(9):2888-94.
Pitout, J.D.; Thomson, K.S.; Hanson, N.D.; Ehrhardt, A.F.; Moland, E.S.; Sanders, C.C. (1998). Beta-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrobial Agents and Chemotherapy; 42(6):1350-4.
Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum; 6(4): 1-6
Pradel, N.; Boukhors, K.; Bertin, Y.; Forestier, C.; Martin, C.; Livrelli, V. (2001). Heterogeneity of Shiga toxin-producing Escherichia coli strains isolated from hemolytic-uremic syndrome patients, cattle, and food samples in central France. Applied and Environmental Microbiology; 67(6): 2460-8.
Pusz, P.; Bok, E.; Mazurek, J.; Stosik, M.; Baldy-Chudzik, K. (2014). Type 1 fimbriae in commensal Escherichia coli derived from healthy humans. Acta Biochimica Polonica; 61(2):389-92.
Rawool, D.B.; Vergis, J.; Vijay, D.; Dhaka, P.; Negi, M.; Kumar, M.; Nair, A.; Poharkar, K.V.; Kurkure, N.V.; Kumar, A.; et al. (2015). Evaluation of a PCR targeting fimbrial subunit gene (fimA) for rapid and reliable detection of Enteroaggregative Escherichia coli recovered from human and animal diarrhoeal cases. Journal of Microbiological Methods; 110:45-8.
Robicsek, A.; Jacoby, G.A.; Hooper, D.C. (2006a). The worldwide emergence of plasmid-mediated quinolone resistance. The Lancet. Infectious Diseases (10):629-40.
Robicsek, A.; Strahilevitz, J.; Sahm, D.F.; Jacoby, G.A.; Hooper, D.C. (2006b). qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrobial Agents and Chemotherapy; 50(8):2872-4.
Sambrook, J.; Russell, D.W. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 1:198-250.
Srivani, M.; Reddy, Y.N.; Subramanyam, K.V.; Reddy, M.R.; Rao, T.S. (2017). Prevalence and antimicrobial resistance pattern of Shiga toxigenic Escherichia coli in diarrheic buffalo calves. Veterinary World; 10(7):774-778.
Wolny-Koladka, K.; Lenart-Boron, A. (2018). Antimicrobial resistance and the presence of extended-spectrum beta-lactamase genes in Escherichia coli isolated from the environment of horse riding centers. Environmental Science and Pollution Research International; 25(22):21789-21800.
Wu, C.M.; Wang, Y.; Cao, X.Y.; Lin, J.C.; Qin, S.S.; Mi, T.J.; Huang, S.Y.; Shen, J.Z. (2009). Emergence of plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolated from chickens in China. The Journal of Antimicrobial Chemotherapy; 63(2):408-11.
Yasir, M.; Ajlan, A.M.; Shakil, S.; Jiman-Fatani, A.A.; Almasaudi, S.B.; Farman, M.; Baazeem, Z.M.; Baabdullah, R.; Alawi M, Al-Abdullah N and others. (2018). Molecular characterization, antimicrobial resistance and clinico-bioinformatics approaches to address the problem of extended-spectrum beta-lactamase-producing Escherichia coli in western Saudi Arabia. Scientific Reports; 8(1):14847.
Younis, G.A.; Elkenany, R.M.; Fouda, M.A.; Mostafa, N.F. (2017). Virulence and extended-spectrum beta-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption. Veterinary World; 10(10):1281-1285.
Zhao, H.X.; Zhao, J.L.; Shen, J.Z.; Fan, H.L.; Guan, H.; An, X.P.; Li, P.F. (2014). Prevalence and molecular characterization of fluoroquinolone resistance in Escherichia coli isolates from dairy cattle with endometritis in China. Microbial Drug Resistance; 20(2):162-9.
Zhao, X.; Yang, J.; Ju, Z.; Chang, W.; Sun, S. (2018). Molecular Characterization of Antimicrobial Resistance in Escherichia coli from Rabbit Farms in Tai'an, China. BioMed Research international: 8607647.
Zheng, H.; Zeng, Z.; Chen, S.; Liu, Y.; Yao, Q.; Deng, Y.; Chen, X.; Lv, L.; Zhuo, C.; Chen, Z.; et al. (2012). Prevalence and characterisation of CTX-M beta-lactamases amongst Escherichia coli isolates from healthy food animals in China. International Journal of Antimicrobial Agents; 39(4):305-10. | ||
آمار تعداد مشاهده مقاله: 240 تعداد دریافت فایل اصل مقاله: 240 |