
تعداد نشریات | 41 |
تعداد شمارهها | 1,143 |
تعداد مقالات | 9,812 |
تعداد مشاهده مقاله | 18,046,990 |
تعداد دریافت فایل اصل مقاله | 12,619,994 |
Anion-Doped Overoxidized Polypyrrole/Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode as a New Electrochemical Sensing Platform For Buprenorphine Opioid Drug | ||
Iranian Journal of Analytical Chemistry | ||
دوره 8، شماره 1 - شماره پیاپی 15، خرداد 2021، صفحه 56-64 اصل مقاله (827.16 K) | ||
نوع مقاله: Full research article | ||
شناسه دیجیتال (DOI): 10.30473/ijac.2021.59410.1194 | ||
نویسندگان | ||
Abdolhamid Hatefi-Mehrjerdi* 1؛ ُُSoghra Rafiei Boldaji1؛ Mohammad Reza Yaftian2؛ Hassan Shayani-Jam2 | ||
1Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran | ||
2Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran | ||
چکیده | ||
A novel Buprenorphine (BPR) sensor is fabricated based on nanocomposite film of benzene-1,3-disulfonate anion doped overoxidized polypyrrole/multiwalled carbon modified glassy carbon electrode. The carbon nanotubes were drop-casted on bare electrode, and then thin layer of benzene-1,3-disulfonate-doped overoxidized polypyrrole formed electrochemically on it. Effect of experimental conditions involving supporting electrolyte pH, carbon nanotubes suspension drop size, and the number of potential cycles in overoxidized polymerization were optimized by monitoring the voltammetry responses of the modified electrode. Then the optimized modified electrode was used for electrochemical sensing of BPR by differential pulse voltammetry, which exhibited a linear growth with high sensitivity in anodic peak currents at the BPR concentration range of 0.06-40 µM, and a detection limit of 28 nM. Finally, the determination of BPR in urine real samples was performed by the new sensor and satisfactory results obtained. | ||
کلیدواژهها | ||
Buprenorphine؛ Multiwalled Carbon Nanotubes؛ Overoxidized Polypyrrole؛ Nanocomposite؛ Electrochemical Sensor؛ Differential Pulse Voltammetry | ||
عنوان مقاله [English] | ||
الکترود کربن شیشه ای اصلاح شده با پلی پیرول اوراکسیدایز آنیون داپ شده برروی نانولوله های کربن چنددیواره به عنوان پلتفرم حسگر جدید الکتروشیمیایی داروی مخدر بوپرنورفین | ||
نویسندگان [English] | ||
عبدالحمید هاتفی مهرجردی1؛ صغری رفیعی بلداجی1؛ محمد رضا یافتیان2؛ حسن شایانی جم2 | ||
11. گروه ﺷﻴﻤﻲ، داﻧﺸﮕﺎه ﭘﻴﺎم ﻧﻮر، ﺻﻨﺪوق پستی 3697-19395، ﺗﻬﺮان، اﻳﺮان | ||
22. گروه شیمی، دانشگاه زنجان، صندوق پستی 38791-45371، زنجان، ایران | ||
چکیده [English] | ||
یک حسگر جدید بوپرنورفین (BPR) بر اساس الکترود کربن شیشه ای اصلاح شده با با پلی پیرول اوراکسیدایز داپ شده با آنیون بنزن-1و3-دی سولفونات برروی نانولوله های کربن چنددیواره ساخته شده است. نانولوله های کربنی بر روی یک الکترود برهنه تخلیه و خشک شدند و سپس یک لایه نازک از پلی پیرول اوراکسیدایز داپ شده با بنزن-1و3-دی سولفونات به صورت الکتروشیمیایی روی آن تشکیل شد. اثر شرایط آزمایش شامل pH الکترولیت حامل، اندازه قطره سوسپانسیون نانولوله های کربنی و تعداد چرخه های پتانسیل در پلیمریزاسیون اضافه اکسید شده با نظارت بر پاسخ های ولتامتری الکترود اصلاح شده، بهینه سازی شد. سپس از الکترود اصلاح شده بهینه سازی شده برای اندازه گیری الکتروشیمیایی BPR توسط ولتامتری پالس دیفرانسیل استفاده شد که یک رشد خطی با حساسیت بالا در جریان های پیک آندی در محدوده غلظت 40-0.06 میکرومولار از BPR و حد تشخیص 28 نانومولار نشان داد. سرانجام ، اندازه گیری BPR در نمونه های واقعی ادرار توسط حسگر جدید انجام شد و نتایج رضایت بخشی به دست آمد. | ||
کلیدواژهها [English] | ||
بوپرنورفین, نانولوله های کربن چنددیواره؛ پلی پیرول اوراکسیدایز؛ نانوکامپوزیت؛ حسگر الکتروشیمیایی؛ ولتامتری پالس تفاضلی | ||
مراجع | ||
[1] J.M.P.J. Garrido, M.P.M. Marques, A.M.S. Silva, T.R.A. MacEdo, A.M.Oliveira-Brett and F. Borges, Spectroscopic and electrochemical studies of cocaine-opioid interactions, Anal. Bioanal. Chem., 388 (2007) 1799–1808.
[2] R.E. Johnson, P.J. Fudala and R. Payne, Buprenorphine: Considerations for pain management, J. Pain Symptom Manage., 29 (2005) 297–326.
[3] B. Holmes and R.C. Heel, Flecainide A review of its pharmacological properties and therapeutic efficacy, Curr. Ther. (Seaforth)., 26 (1985) 17–23.
[4] W. Huang, D.E. Moody and E.F. McCance-Katz, The in vivo glucuronidation of buprenorphine and norbuprenorphine determined by liquid chromatography-electrospray ionization-tandem mass spectrometry, Ther. Drug Monit., 28 (2006) 245–251.
[5] S. Pirnay, F. Hervé, S. Bouchonnet, B. Perrin, F.J. Baud and I. Ricordel, Liquid chromatographic-electrospray ionization mass spectrometric quantitative analysis of buprenorphine, norbuprenorphine, nordiazepam and oxazepam in rat plasma, J. Pharm. Biomed. Anal., 41 (2006) 1135–1145.
[6] J. Mendelson, R.A. Upton, E.T. Everhart, P. Jacob and R.T. Jones, Bioavailability of sublingual buprenorphine, J. Clin. Pharmacol., 37 (1997) 31–37.
[7] M. Ohtani, H. Kotaki, K. Uchino, Y. Sawada and T. Iga, Pharmacokinetic analysis of enterohepatic circulation of buprenorphine and its active metabolite, norbuprenorphine, in rats, Drug Metab. Dispos., 22 (1994) 2–7.
[8] I.I. Papoutsis, P.D. Nikolaou, S.A. Athanaselis, C.M. Pistos, C.A. Spiliopoulou and C.P. Maravelias, Development and validation of a highly sensitive GC/MS method for the determination of buprenorphine and nor-buprenorphine in blood, J. Pharm. Biomed. Anal., 54 (2011) 588–591.
[9] D.E. Moody, J.D. Laycock, A.C. Spanbauer, D.J. Crouch, R.L. Foltz, J.L. Josephs, L. Amass and W.K. Bickel, Determination of buprenorphine in human plasma by gas chromatography- positive ion chemical ionization mass spectrometry and liquid chromatography- tandem mass spectrometry, J. Anal. Toxicol., 21 (1997) 406–414.
[10] F. Lagrange, F. Pehourcq, M. Baumevieille and B. Begaud, Determination of buprenorphine in plasma by liquid chromatography: Appication to heroin-dependent subjects, J. Pharm. Biomed. Anal., 16 (1998) 1295–1300.
[11] L. Mercolini, R. Mandrioli, M. Conti, C. Leonardi, G. Gerra, and M.A. Raggi, Simultaneous determination of methadone, buprenorphine and norbuprenorphine in biological fluids for therapeutic drug monitoring purposes, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 847 (2007) 95–102.
[12] W.J. Liaw, S.T. Ho, J.J. Wang, O.Y.P. Hu and J.H. Li, Determination of morphine by high-performance liquid chromatography with electrochemical detection: Application to human and rabbit pharmacokinetic studies, J. Chromatogr. B Biomed. Appl., 714 (1998) 237–245.
[13] A. Tracqui, P. Kintz and P. Mangin, HPLC/MS Determination of Buprenorphine and Norbuprenorphine in Biological Fluids and Hair Samples, J. Forensic Sci., 42 (1997) 14077J.
[14] F. Lopes, J.G. Pacheco, P. Rebelo and C. Delerue-Matos, Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection, Sensors Actuators, B Chem., 243 (2017) 745–752.
[15] J. Sochor, J. Dobes, O. Krystofova, B. Ruttkay-Nedecky, P. Babula, M. Pohanka, T. Jurikova, O. Zitka, V. Adam, B. Klejdus and R. Kizek, Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 8 (2013) 8464–8489.
[16] M.A. García-Fernández, M.T. Fernández-Abedul and A. Costa-García, Voltammetric study and determination of buprenorphine in pharmaceuticals, J. Pharm. Biomed. Anal., 21 (1999) 809–815.
[17] A.R. Fakhari, A. Sahragard and H. Ahmar, Development of an Electrochemical Sensor Based on Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for the Determination of Buprenorphine, Electroanalysis, 26 (2014) 2474–2483.
[18] M. Behpour, A. Valipour and M. Keshavarz, Determination of buprenorphine by differential pulse voltammetry on carbon paste electrode using SDS as an enhancement factor, Mater. Sci. Eng. C, 42 (2014) 500–505.
[19] Y.C. Tsai, S.C. Li and S.W. Liao, Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose, Biosens. Bioelectron., 22 (2006) 495–500.
[20] X. Dang, H. Hu, S. Wang and S. Hu, Nanomaterials-based electrochemical sensors for nitric oxide, Microchim. Acta, 182 (2014) 455–467.
[21] I.S. Chronakis, S. Grapenson and A. Jakob, Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties, Polymer (Guildf)., 47 (2006) 1597–1603.
[22] H. Peng, L. Zhang, C. Soeller and J. Travas-Sejdic, Conducting polymers for electrochemical DNA sensing, Biomaterials, 30 (2009) 2132–2148.
[23] M. Ates, A review study of (bio)sensor systems based on conducting polymers, Mater. Sci. Eng. C, 33 (2013) 1853–1859.
[24] R.K. Shervedani, A.Z. Isfahani, R. Khodavisy and A. Hatefi-Mehrjardi, Electrochemical investigation of the anodic corrosion of Pb-Ca-Sn-Li grid alloy in H2SO4 solution, J. Power Sources, 164 (2007) 890–895.
[25] A. Hassanein, N. Salahuddin, A. Matsuda, G. Kawamura and M. Elfiky, Fabrication of biosensor based on Chitosan-ZnO/Polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application, Mater. Sci. Eng. C, 80 (2017) 494–501.
[26] Y.S. Gao, J.K. Xu, L.M. Lu, L.P. Wu, K.X. Zhang, T. Nie, X.F. Zhu and Y. Wu, Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine, Biosens. Bioelectron., 62 (2014) 261–267.
[27] S. Shahrokhian, M. Azimzadeh and P. Hosseini, Modification of a glassy carbon electrode with a bilayer of multiwalled carbon nanotube/benzene disulfonate-doped polypyrrole: Application to sensitive voltammetric determination of olanzapine, RSC Adv., 4 (2014) 40553–40560.
[28] S. Shahrokhian and M. Ghalkhani, Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine, Electrochim. Acta, 55 (2010) 3621–3627.
[29] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 101 (1979) 19–28.
[30] A. Farmany, M. Shamsara and H. Mahdavi, Enhanced electrochemical biosensing of Buprenorphine opioid drug by highly stabilized magnetic nanocrystals, Sensors Actuators, B Chem., 239 (2017) 279–285.
| ||
آمار تعداد مشاهده مقاله: 405 تعداد دریافت فایل اصل مقاله: 338 |