تعداد نشریات | 37 |
تعداد شمارهها | 1,003 |
تعداد مقالات | 8,559 |
تعداد مشاهده مقاله | 15,338,911 |
تعداد دریافت فایل اصل مقاله | 10,734,232 |
NGS در خدمت ارتقای پزشکی شخصمحور: گزارش موردی یک بیمار مبتلا به سرطان پستان تهاجمی | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
دوره 10، شماره 3 - شماره پیاپی 39، بهمن 1400، صفحه 55-66 اصل مقاله (1.46 M) | ||
نوع مقاله: گزارش موردی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2021.58111.1823 | ||
نویسندگان | ||
لیلا میرصادقی1؛ رضا حاجی حسینی2؛ علی محمد بنایی مقدم3؛ کاوه کاوسی* 4 | ||
1دکتری، گروه بیولوژی، دانشگاه پیام نور، تهران، ایران | ||
2استاد، گروه بیولوژی، دانشگاه پیام نور، تهران، ایران | ||
3استادیار، آزمایشگاه ژنومیکس و اپیژنومیکس (LGE)، گروه بیوشیمی، مرکز تحقیقات بیوشیمی و بیوفیزیک (IBB)، دانشگاه تهران، تهران، ایران | ||
4استادیار، آزمایشگاه سیستمهای زیستی پیچیده و بیوانفورماتیک (CBB)، گروه بیوانفورماتیک، مرکز تحقیقات بیوشیمی و بیوفیزیک (IBB)، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
ظهور پزشکی شخصمحور با تکیهبر تکنیکهای مولکولی، از جمله ترادفیابی نسل بعدی، درک ما را از محرکهای مؤثر بر بیماریهای پیچیده، از جمله سرطان افزایش داده است. در بسیاری از موارد به دلیل پیچیدگی سرطان، تصمیمگیری فقط بر اساس اقدامات بالینی یا شواهد آزمایشگاهی برای پزشکان و زیستشناسان امری دشوار است. بنابراین، رویکرد پزشکی شخصی وارد عمل میشود و دادههای انبوه و ارزشمندی را در اختیار متخصصان قرار می دهد. علاوه بر این، تجزیه و تحلیل دادهها با ابزارهای بیوانفورماتیک، افق جدیدی را در روند پیشآگهی و غربالگری افراد در معرض خطر گشوده است. این امر باعث پیشرفتهای چشمگیر اخیر در فناوری تشخیص شده و درمانهای هدفمند را بهبود بخشیده است. در مطالعه حاضر، نمونه بایگانیشده از بافت تثبیت شده با فرمالین و جاسازی شده در پارافین مربوط به یک بیمار زن ایرانی مبتلا به سرطان پستانِ تهاجمی بهطور موردی بررسی شد. به این ترتیب که پس از استخراج و خالصسازیDNA ، ترادفیابی کل اگزوم انجام شد و دادههای جهش مورد تجزیه و تحلیل قرار گرفت. اطلاعات به دست آمده میتواند به غنی سازی پایگاههای داده ژنوم ایرانی کمک کند. در پرتو این پژوهش و با مطالعه نمونههای ایرانی بیشتر، ما میتوانیم یک نقشه راه بهینه برای زیستشناسان پژوهشگر در حیطه سرطان و آنکولوژیستهای دقیق ارائه دهیم تا امید به زندگی بیماران مبتلا به سرطان پستان افزایش یابد. | ||
کلیدواژهها | ||
بیوانفورماتیک؛ پزشکی شخصمحور؛ ترادفیابی نسل بعدی؛ دادههای جهش؛ کارسینومای پستان تهاجمیشده | ||
عنوان مقاله [English] | ||
NGS Serves to Promote Personalized Medicine: A Case-Report of a Patient with Invasive Breast Carcinoma | ||
نویسندگان [English] | ||
Leila Mirsadeghi1؛ Reza Haji Hosseini2؛ Ali Mohammad Banaei3؛ Kaveh Kavousi4 | ||
1Ph. D., Department of Biology, Payame Noor University, Tehran, Iran | ||
2Professor, Department of Biology, Payame Noor University, Tehran, Iran | ||
3Assistant Professor, Laboratory of Genomics and Epigenomics (LGE), Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran | ||
4Assistant Professor, Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
The emergence of personalized medicine based on molecular techniques, such as next-generation sequencing, has increased our understanding of drivers of complex diseases, including cancers. In many cases due to the complexity of cancer, it is difficult for human physicians and biologists to make decisions on the basis solely of clinical practice or laboratory evidence. Thus, the personalized medicine approach comes into play and provides large volumes and valuable data for experts. Further, data analysis with bioinformatic tools has opened a new horizon in the process of prognosis and screening of in risk individuals. It has caused significant recent advances in diagnostic technology and improved targeted treatments. In the present study, archived formalin-fixed paraffin-embedded tissue from an Iranian female patient with invasive breast carcinoma was investigated. In this way, after DNA extraction and purification, the whole exome was sequenced and the mutation data were analyzed. Obtained information could help to the enrichment of the Iranian genome databases. In the light of this research and by studying other Iranian samples, we can provide an optimized roadmap for precision oncologists to increase the life expectancy of breast cancer patients. | ||
کلیدواژهها [English] | ||
Bioinformatics, Invasive breast carcinoma, Mutation data, Next-generation sequencing, Personalized medicine | ||
مراجع | ||
Aureli, A.; Canossi, A.; Del Beato, T.; Buonomo, O.; Rossi, P.; Roselli, M.; … Sconocchia, G. (2020). Breast Cancer Is Associated with Increased HLA-DRB1* 11: 01 and HLA-DRB1* 10: 01 Allele Frequency in a Population of Patients from Central Italy. Immunological Investigations; 49(5), 489-497.
Chai, X.; Domchek, S.; Kauff, N.; Rebbeck, T.; Chen, J. (2015). RE: Breast Cancer Risk After Salpingo-Oophorectomy in Healthy BRCA1/2 Mutation Carriers: Revisiting the Evidence for Risk Reduction. Journal of the National Cancer Institute; 107(9), djv217.
Consortium, G.O. (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research; 32(suppl_1), D258-D261.
Ebrahimi, M.; Vahdaninia, M.; Montazeri, A. (2015). Risk factors for breast cancer in Iran: a case-control study. Breast Cancer Research; 4: 4.
Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; … May, B. (2017). The reactome pathway knowledgebase. Nucleic Acids Research; 46(D1): D649-D655.
Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M.; Roselló, S.; … Cervantes, A. (2020). Personalized medicine: recent progress in cancer therapy. Cancers; 12(4): 1009.
Gourraud, P.-A.; Khankhanian, P.; Cereb, N.; Yang, S.Y.; Feolo, M.; Maiers, M.; … Oksenberg, J. (2014). HLA diversity in the 1000 genomes dataset. PloS One; 9(7): e97282.
Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; … Stevens, C. (2007). Patterns of somatic mutation in human cancer genomes. Nature; 446(7132): 153-158.
Griffith, O.L.; Gray, J.W. (2011). ’Omic approaches to preventing or managing metastatic breast cancer. Breast Cancer Research; 13(6): 230.
Jiang, Y.; Jiang, Y.; Wang, S.; Zhang, Q.; Ding, X. (2019). Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinformatics; 20(1): 1-12.
Kanehisa, M.; Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research; 28(1): 27-30.
Kumar, A.; Singla, A. (2019). Epidemiology of Breast Cancer: Current Figures and Trends. In Preventive Oncology for the Gynecologist (pp. 335–339). Springer.
Liu, Y.; Tian, F.; Hu, Z.; DeLisi, C. (2015). Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers. Scientific Reports, 5.
McKenzie, A.J.H.; Dilks, H.; Jones, S.F.; Burris III, H. (2019). Should next-generation sequencing tests be performed on all cancer patients? Expert Review of Molecular Diagnostics; 19(2): 89-93.
Mirsadeghi, L.; Hosseini, R.H.; Banaei-Moghaddam, A.M.; Kavousi, K. (2021). EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer. BMC Medical Genomics; 14(1), 1-19.
Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Duso, B.A.; Curigliano, G. (2019). cancer. Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics; 9-30.
Nishimura, D. (2001). BioCarta. Biotech Software & Internet Report: The Computer Software Journal for Scient; 2(3): 117-120.
Schaefer, C.F.; Anthony, K.; Krupa, S.; Buchoff, J.; Day, M.; Hannay, T.; Buetow, K.H. (2009). PID: the pathway interaction database. Nucleic Acids Research; 37(suppl_1), D674-D679.
Sheikine, Y.; Kuo, F.C.; Lindeman, N.I. (2017). Clinical and technical aspects of genomic diagnostics for precision oncology. Journal of Clinical Oncology; 35(9): 929-933.
Smith, N.G.; Gyanchandani, R.; Shah, O.S.; Gurda, G.T.; Lucas, P.C.; Hartmaier, R.J.; … Kota, K. (2019). Targeted mutation detection in breast cancer using MammaSeqTM. Breast Cancer Research; 21(1): 22.
Truty, R.; Paul, J.; Kennemer, M.; Lincoln, S.E.; Olivares, E.; Nussbaum, R.L.; Aradhya, S. (2019). Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genetics in Medicine; 21(1): 114-123.
Tung, N.; Battelli, C.; Allen, B.; Kaldate, R.; Bhatnagar, S.; Bowles, K.; … Ellisen, L. (2015). Frequency of mutations in individuals with breast cancer referred for BRCA 1 and BRCA 2 testing using next‐generation sequencing with a 25‐gene panel. Cancer; 121(1): 25-33.
Wang, K.; Li, M.; Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research; 38(16): e164-e164.
Watson, I.R.; Takahashi, K.; Futreal, P.A.; Chin, L. (2013). Emerging patterns of somatic mutations in cancer. Nature Reviews Genetics; 14(10): 703-718.
Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; … Ptak, J. (2007). The genomic landscapes of human breast and colorectal cancers. Science; 318(5853): 1108-1113. | ||
آمار تعداد مشاهده مقاله: 327 تعداد دریافت فایل اصل مقاله: 201 |