تعداد نشریات | 41 |
تعداد شمارهها | 1,121 |
تعداد مقالات | 9,573 |
تعداد مشاهده مقاله | 17,368,559 |
تعداد دریافت فایل اصل مقاله | 12,119,088 |
Adjusting the Coefficients of the PI^α D^β Controllers Using Iterative Feedback Tuning (IFT) Algorithm | ||
Control and Optimization in Applied Mathematics | ||
دوره 5، شماره 2، مهر 2020، صفحه 39-64 اصل مقاله (1.79 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2021.56679.1156 | ||
نویسندگان | ||
Mohammad Ali Vali* 1؛ Mahdi Mashayekhi Esfichar2؛ Shahriar Farahmand Rad3 | ||
1Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran | ||
2Department of Mathematics, Payame, Noor University (PNU), P.O. BOX 19395-4697. Tehran, Iran | ||
3Department of Mathematics, Payame Noor University (PNU), P.O. BOX 19395-4697, Tehran, Iran | ||
چکیده | ||
Iterative feedback tuning (IFT) is an algorithm for adjusting the coefficients of the integer-order type proportional-integral-derivative (PID) controllers without needing a system model. The IFT algorithm is performed iteratively with the aim of optimizing the control coefficients at each stage via an objective function. In this research, for the first time, the IFT algorithm is used to adjust all the coefficients of the fractional order PID controllers, i.e., PI^α D^β controllers to have optimal performance. For this purpose, fractional order calculations and the integer-order version of the IFT algorithm are firstly presented, and the novel IFT algorithm is then used to adjust coefficients of the PI^α D^β controller. Finally, the performance of the proposed method is illustrated and verified through some examples. | ||
کلیدواژهها | ||
Fractional order PID؛ Iterative feedback tuning؛ PID controller؛ PI^α D^β controller؛ Fractional order calculus؛ Fractional order systems | ||
عنوان مقاله [English] | ||
تنظیم ضرایب کنترلکنندههای مرتبه کسری PI^α D^β با استفاده از الگوریتم IFT | ||
نویسندگان [English] | ||
محمد علی ولی1؛ مهدی مشایخی اسفیچار2؛ شهریار فرهمند راد3 | ||
1ایران، کرمان، دانشگاه شهیدباهنر کرمان، دانشکده ریاضی و کامپیوتر، بخش ریاضی کاربردی | ||
2ایران، تهران، دانشگاه پیام نور، گروه ریاضی، صندوق پستی 4697-19395 | ||
3ایران، تهران، دانشگاه پیام نور، گروه ریاضی، صندوق پستی4697-19395 | ||
چکیده [English] | ||
روش تنظیم ضرایب به روش تکرار شونده (IFT)، الگوریتمی برای تنظیم ضرایب کنترلکنندههای PID مرتبه صحیح بدون نیاز به مدل سیستم میباشد. الگوریتم IFT با هدف بهینهسازی ضرایب کنترلکننده، در هر مرحله از طریق یک تابع هدف به صورت تکراری انجام میشود. در این مقاله برای اولین بار از این الگوریتم برای تنظیم بهینه ضرایب کنترلکنندههای مرتبه کسری یا PI^α D^β استفاده شده است. برای این منظور ابتدا محاسبات مرتبه کسری و الگوریتم IFT مرتبه صحیح ارائه شده، سپس الگوریتم IFT برای تنظیم ضرایب کنترلکنندههای مرتبه کسری PI^α D^β به کار برده شده است. در پایان، روش پیشنهادی با مثالهایی ارائه شده است. | ||
کلیدواژهها [English] | ||
PID مرتبه کسری, تنظیم ضرایب به روش تکرار شونده, کنترلکننده PID, کنترلکنندههای PI^α D^β, محاسبات مرتبه کسری, سیستمهای مرتبه کسری | ||
مراجع | ||
[1] Acharya D. S., Mishra S. K. 2020. “A multi-agent based symbiotic organisms search algorithm for tuning fractional order PID controller”, Measurement, 155, 107559.
[2] Ahmadi Dastjerdi A., Saikumar N., Hossein Nia S. H. 2018. “Tuning guidelines for fractional order PID controllers”, Mechatronics, 56, 26-36.
[3] Ahmadi Dastjerdi A., Vinagre B. M., Chen Y. Q., Hossein Nia S. H. 2019. “Linear fractional order controllers”, Annual Reviews in Control, 47, 51-70.
[4] Al Mamun A., Ho W. Y., Wang W. E., Lee T. H. 2007. “Iterative feedback tuning (IFT) of hard disk drive head positioning servomechanism”, IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, 33, 769-774.
[5] Bingul Z., Karahan O. 2011. “Tuning of fractional PID controllers using PSO algorithm for robot trajectory control”, Mechatronics (ICM), IEEE International Conference on Mechatronics, 955-960.
[6] Birs I., Muresan C., Nascu I., Ionescu C. 2019. “A survey of recent advances in fractional order control for time delay systems”, IEEE Access, 7, 30951-30965.
[7] Bunin G. A., Francois G., Bonvin D. 2013. “Iterative controller tuning by real-time optimization”, IFAC Proceedings Volumes, 46(32), 21-26.
[8] Caponetto R., Dongola G., Fortuna L., Petrás I. 2010. “Fractional order systems modeling and control applications”, World Scientific, Series on Nonlinear Science, Series A, 72.
[9] Caputo M. 1967. “Linear model of dissipation whose Q is almost frequency independentII”, Geophysical Journal International, 13, 529-539.
[10] Chang L. Y., Chen H. C. (2009). “Tuning of fractional PID controllers using adaptive genetic algorithm for active magnetic bearing system”, World Scientific and Engineering Academy and Society (WSEAS), 8(1), 158-167.
[11] Erol H. 2021. “Stability analysis of pitch angle control of large wind turbines with fractional order PID controller”, Sustainable Energy, Grids and Networks, 26, 100430.
[12] Formentin S., Heusden K. V., Karimi A. 2014. “A comparison of model-based and datadriven controller tuning”. International Journal of Adaptive Control and Signal Processing, 28(10), 882-897.
[13] Freeborn T. J., Maundy B., Elwakil A. 2010. “Second-order approximation of the fractional Laplacian operator for equal-ripple response”, I2010 53rd IEEE International Midwest Symposium on Circuits and Systems, 1173-1176.
[14] Gabriel G. L., Grandi J. O. 2019. “Tuning of fractional order PID controllers based on the frequency response approximation method”, IFAC-Papers OnLine, 52(1), 982-987.
[15] Guermah S. 2011. “CRONE control, applications to a pilot laboratory process”, Ph.D. Thesis, University of Mouloud Mammeri De Tizi-Quzou.
[16] Goharimanesh M., Lashkaripour A., Abouei Mehrizi A. 2015. “Fractional order PID controller for diabetes patients”, Journal of Computational Applied Mechanics, 46(1), 69-76.
[17] Hjalmarsson H. 1998. “Control of nonlinear systems using iterative feedback tuning”, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 4, 2083-2087.
[18] Huusom J. K., Hjalmarsson H., Poulsen N. K., Jørgensen S. B. 2008. “Improving convergence of iterative feedback tuning using optimal external perturbations”, 2008 47th IEEE Conference on Decision and Control, 2618-2623.
[19] Huusom J. K., Hjalmarsson H., Poulsen N. K., Jørgensen S. B. 2011. “A design algorithm using external perturbation to improve iterative feedback tuning convergence”, Automatica, 47(12), 2665-2670.
[20] Jin Y., Chen Y. Q., Wang C., Luo Y. 2009. “Fractional order proportional derivative (FOPD) and FO [PD] controller design for networked position servo systems”, International Design Engineering Technical Conference and Computers and Information in Engineering Conference, DETC2009-87662, 1341-1349.
[21] Kissling S., Blanc Ph., Myszkorowski P., Vaclavik, I. 2009. “Application of iterative feedback tuning (IFT) to speed and position control of a servo drive”, Control Engineering Practice, 17(7), 834-840.
[22] Kumar L. Kumar P., Prawendra K., Satyajeet D. N. 2018. “Tuning of fractional order PIλ Dµ controllers using evolutionary optimization for PID tuned synchronous generator excitation system”, IFAC-Papers OnLine, 51, 859-864.
[23] Lequin O., Gevers M., Mossberg M., Bosmans E., Triest L. 2003. “Iterative feedback tuning of PID parameters: comparison with classical tuning rules”, Control Engineering Practice, 11(9), 1023-1033.
[24] Liu L., Zhang S. 2018. “Robust fractional-order PID controller tuning based on Bode’s optimal loop shaping”, Complexity, 2018, 6570560.
[25] Luo Y., Chen Y. Q. 2013. “Fractional order motion controls”, Chichester, John Wiley & Sons.
[26] Mahathanakiet K., Johnson M., Sanchez A., Wade M. 2002. “Iterative feedback tuning and an application to a wastewater treatment plant”, 4th Asian Control Conference, Singapore.
[27] Monje C. A., Chen Y. Q., Vinagre B. M., Xue D., Feliu-Batlle V. 2010. “Fractional order systems and controls: fundamentals and applications”, Advances in Industrial Control, Springer-Verlag, London.
[28] Monje C. A., Vinagre B. M., Feliu, V., Chen Y. 2008. “Tuning and auto-tuning of fractional order controllers for industry applications”, Control Engineering Practice, 16(7), 798-812.
[29] Nemati A., Alizadeh A., Soltanian F. 2019. “Solution of fractional optimal control problems with noise function using the Bernstein functions”, Control and Optimization in Applied Mathematics, 4(1), 37-51. [30] Nur Deniz F., Yüce A., Tan N., Atherton D. P. 2017. “Tuning of fractional order PID controllers based on integral performance criteria using Fourier series method”, IFACPapers Online, 50(1), 8561-8566.
[31] Podlubny I. 1999. “Fractional differential equations”, Academic Press, San Diego & London.
[32] Precup R., Preitl S., Fodor J., Ursache I. B., Clep P. A., Kilyeni S. 2008. “Experimental validation of iterative feedback tuning solutions for inverted pendulum crane mode control”, 2008 Conference on Human System Interactions, 536-541.
[33] Rezaei M., Gharaveisi A., Vali M. 2017. “Fractional order proportional-integral-derivative controller parameter selection based on iterative feedback tuning; case study: Ball Levitation System”, Transactions of the Institute of Measurement and Control, 40(6), 1776-1787.
[34] Robbins H., Monro S. 1951. “A stochastic approximation method”, Annals of Mathematical Statistics, 22(3), 400-407.
[35] Ross B. 1977. “The development to fractional calculus 1695-1900”, Historia Mathematica, 14(1), 75-89.
[36] Padula F., Visioli A. 2011. “Tuning rules for optimal PID and fractional-order PID controllers”, Journal of Process Control, 21(1), 69-81.
[37] Petrás I. 2019. “Modified versions of the fractional-order PID controller”, Applications in Control (De Gruyter), 6, 57-72.
[38] Sen M. 2014. “Introduction to fractional-order operators and their engineering applications”, University of Notre Dame, Netherland.
[39] Tepljakov A. 2015. “FOMCON Toolbox”, Available at: http://fomcon.net/fomcontoolbox/ overview/. [40] Tepljakov A., Petlenkov E., Belikov J., Finajev J. 2013. “Fractional-order controller design and digital implementation using FOMCON toolbox for MATLAB”, 2013 IEEE Conference on Computer Aided Control System Design (CACSD), 340-345.
[41] Xinghe M., Rui W., Xuhui B. 2013. “Iterative feedback tuning for robotic manipulator trajectory tracking”, International Journal of Advancements in Computing Technology, 5, 688-695.
[42] Xue D., Zhao C., Chen Y. Q. 2006. “Fractional order PID control of a DC motor with elastic shaft: a case study”, 2006 American Control Conference.
[43] Yang B., Wang J., Wang J., Shu H., Li D., Zeng C., Chen Y., Zhang X., Yu T. 2021. “Robust fractional-order PID control of supercapacitor energy storage systems for distribution network applications: A perturbation compensation based approach”, Journal of Cleaner Production, 279, 123362.
[44] Zamani M., Karimi-Ghartemani M., Sadati N., Parniani M. 2009. “Design of a fractional order PID controller for an AVR using particle swarm optimization”, Control Engineering Practice, 17(12), 1380-1387.
[45] Zhang Y., Li J. 2011. “Fractional-order PID controller tuning based on genetic algorithm”, 2011 International Conference on Business Management and Electronic Information, 764- 767.
[46] Zhao C., Xue D., Chen Y. Q. 2005. “A fractional order PID tuning algorithm for a class of fractional order plants”, Proceedings of the IEEE International Conference on Mechatronics & Automation, 1, 216-221. | ||
آمار تعداد مشاهده مقاله: 391 تعداد دریافت فایل اصل مقاله: 365 |