تعداد نشریات | 41 |
تعداد شمارهها | 1,122 |
تعداد مقالات | 9,588 |
تعداد مشاهده مقاله | 17,394,471 |
تعداد دریافت فایل اصل مقاله | 12,139,877 |
On Optimal Identification of Distribution for Two Independent Markov Chains to the Subject Reliability Criterian | ||
Control and Optimization in Applied Mathematics | ||
مقاله 3، دوره 6، شماره 1، فروردین 2021، صفحه 31-41 اصل مقاله (906.81 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2021.60220.1171 | ||
نویسندگان | ||
Leader Navaei* 1؛ Reza Akbari2 | ||
1Department of Statistics, Payame Noor University (PNU), P.O. Box. 19395-3697, Tehran, Iran | ||
2Department of Mathematics, Payame Noor University (PNU), P.O. Box. 19395-3697, Tehran, Iran | ||
چکیده | ||
In this paper, the problem of identification of distributions for two independent objects via simple homogeneous stationary Markov chains with a finite number of states is studied. This problem is introduced by Ahlswede and Haroutunian on the identification of hypotheses under reliability requirements. The problem of identification of distributions for one object via Markov chains was studied by Haroutunian and Navaei in 2009. | ||
کلیدواژهها | ||
Identification؛ Error probability؛ Two independent objects؛ Markov chain | ||
مراجع | ||
[1] Ahlswede R., Haroutunian E. (2006). “On logarithmically asymptotically optimal testing of hypotheses and identification”, Lecture Notes in Computer Science, 4123, 553-571.
[2] Csiszár I. (1998). “Method of types”, IEEE Transactions on Information Theory, 44(6), 2505-2523.
[3] Csiszár I., Körner J. (1981). “Information theory: Coding theorem for discrete memoryless systems”, Academic Press, NewYork.
[4] Csiszár I., Shields P. (2004). “Information theory and statistics: A tutorial”, Fundamentals and Trends in Communications and Information Theory, 1(4).
[5] Dembo A., Zeitouni O. (1993). “Large deviations techniques and applications”, Jons and Bartlet. Publishers, London.
[6] Haroutunian E. A. (1988). “On asymptotically optimal testing of hypotheses concerning Markov chain”, (in Russian). Izvestia Acad. Nauk Armenian SSR. Seria Mathem., 22, 76-80.
[7] Haroutunian E. A., Grigorian N. (2007). “On reliability approach for testing distributions for pair of Markov chains”, Mathematical Problems of Computer Sciences, 29, 86-96.
[8] Haroutunian E. A., Haroutunian M. E., Harutyunyan A. N. (2007).“Reliability criteria in information theory and in statistical hypothesis testing”, Foundations and Trends in Communications and Information Theory, 4, 2-3.
[9] Haroutunian E. A., Navaei L. (2009). “On optimal identification of Markov chain distribution subject to the reliability criterian”, Mathematical Problems of Computer Science, 32, 65-69.
[10] Kullback S. (1959). “Information theory and statistics”, Wiley, New York.
[11] Natarajan S. (1985). “Large deviations, hypotheses testing, and source coding for finite Markov chain”, IEEE Transactions on Information Theory, 31(3), 360-365.
[12] Navaei L. (2007). “Large deviations techniques for error exponents to many hypotheses LAO testing”, Journal of Modern Applied Statistical Methods, USA, 6(3), 487-491.
[13] Navaei L. (2008). “Application of LDT to many hypotheses optimal testing for Markov chain”, Mathematical Problems of Computer Science, 31, 73-78.
[14] Navaei L., Dayanian R. (2008). “Hidden message via hypothesis testing and information-theoretic model”, Journal of Discrete Mathematical Sciences and Cryptography, 11(6), 737-746. | ||
آمار تعداد مشاهده مقاله: 212 تعداد دریافت فایل اصل مقاله: 215 |