تعداد نشریات | 41 |
تعداد شمارهها | 1,120 |
تعداد مقالات | 9,562 |
تعداد مشاهده مقاله | 17,343,971 |
تعداد دریافت فایل اصل مقاله | 12,107,172 |
سنتز نانوذره نقره بهروش سبز از قسمتهای مختلف زعفران و بررسی آن بر باکتریهای مقاوم به آنتیبیوتیک بیمارستانی (آسینتوباکتر بومانی) | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
دوره 11، شماره 3 - شماره پیاپی 43، اسفند 1401، صفحه 33-41 اصل مقاله (1.02 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2023.59216.1833 | ||
نویسندگان | ||
مصطفی رباط سرپوشی1؛ رضا حاجی حسینی* 2؛ مجید حلیمی خلیل آباد3؛ غلامرضا بخشی خانکی4 | ||
1دانشجوی دکتری، گروه زیستشناسی، دانشگاه پیام نور تهران شرق، ایران | ||
2استاد، گروه زیستشناسی، دانشکده علوم پایه، دانشگاه پیام نور تهران، ایران | ||
3استادیار، گروه شیمی، دانشکده علوم پایه و فنی مهندسی، دانشگاه کوثر بجنورد، ایران | ||
4استاد، گروه کشاورزی، دانشگاه پیام نور تهران، ایران | ||
چکیده | ||
نانوذرات، از جمله نانونقره اثرات ضدمیکروبی در برابر دامنه وسیعی از میکروارگانیسمها دارند. هدف از این پژوهش بررسی اثر نانونقره بهدست آمده از قسمتهای مختلف زعفران بر آﺳﻴﻨﺘﻮﺑﺎﻛﺘﺮ بوماﻧﻲ میباشد. آﺳﻴﻨﺘﻮﺑﺎﻛﺘﺮ بوماﻧﻲ همواره بهعنوان یکی از مهمترین عفونتهای بیمارستانی شناسایی شده است، در این پژوهش کلاله زعفران، پرچم (زرده) و گلبرگ تهیه شدند، فقط پرچم (زرده) و گلبرگ باعث سنتز نانونقره شدند. قطر نانونقره با استفاده از TEM اندازهگیری شد، سپس اثر آن بر روی آسینتوباکتبومانی بهروش دیسک، چاهک، MBC و MIC بررسی شد. نتایج مربوط بهروش دیسک دیفیوژن و روش انتشار چاهک نشان داد که با افزایش غلظت نانوذرات نقره، قطر هاله عدم رشد باکتری افزایش مییابد. همچنین میانگین MBC و MIC برای نانونقره حاصل از گلبرگ زعفران بهترتیب ppm 781 و ppm390 و برای نانونقره حاصل از زرده (پرچم) زعفران بهترتیب ppm 3125 و ppm1562 میباشد. میتوان نتیجهگیری کرد که گلبرگ و پرچم زعفران بهخوبی یونهای نقره را کاهش داده و نانوذرات نقره میکنند. همچنین نانونقره بهدستآمده بر روی آسینتوباکتربومانی اثر کشندگی داشت. با توجه به فراوانی ضایعات زعفران در ایران میتواند گزینه مناسبی برای تولید نانونقره باشد. | ||
کلیدواژهها | ||
آسینتوباکتربومانی؛ زعفران؛ مقاومت به آنتیبیوتیک؛ نانونقره | ||
عنوان مقاله [English] | ||
Synthesis of Silver Nanoparticles by Green Method from Different Parts of Saffron and Their Effect on Hospital Antibiotic Resistant Bacteria (Acinetobacter baumannii) | ||
نویسندگان [English] | ||
Mostafa Robatsarpooshi1؛ Reza Haji Hosseini2؛ Majid Halimi Khalilabd3؛ Gholam Reza Bakhshikhaniki4 | ||
1Ph. D. Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran | ||
2Professor, Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran | ||
3Assistant Professor, Department of Chemistry, Faculty of Sciences and Engineering, Kosar University of Bojnord, Iran | ||
4Professor, Department of Agriculture, Payame Noor University, Tehran, Iran | ||
چکیده [English] | ||
Metal oxide nanoparticles, including Nano-silver, have antimicrobial effects against a wide range of microorganisms. The aim of this study was to investigate the effect of Nano-silver obtained from different parts of Saffron on Acinetobacter baumannii has always been identified as one of the most important nosocomial infections. In this study, saffron stigma, stamens, and petals were prepared, only stamens and petals caused the synthesis of Nano-silver. The diameter of Nanosilver was measured using TEM, then its effect on Acinetobacter baumannii was investigated by Disk and Well diffusion, MBC, and MIC methods. The results of the Disk diffusion method and the well diffusion method showed that with increasing the concentration of silver nanoparticles, the diameter of the bacterial growth aura increases. Also, the average MBC and MIC for saffron petal Nano-silver are 781 ppm and 390 ppm, respectively, and for saffron stamens Nano-silver, 3125 ppm, and 1562 ppm, respectively. It can be concluded that the petals and stamens of saffron reduce silver ions well and cause the synthesis of silver Nano-silver. The resulting Nano-silver also had a lethal effect on Acinetobacter baumannii. The abundance of saffron in Iran can be a good option for the production of Nano-silver. | ||
کلیدواژهها [English] | ||
Acinetobacter baumannii, Antibiotic resistance, Nano-silver, Saffron | ||
مراجع | ||
Abdi-Ali, A.; Hendiani, S.; Mohammadi, P.; Gharavi, S. (2014). Assessment of biofilm formation and resistance to imipenem and ciprofloxacin among clinical isolates of Acinetobacter baumannii in Tehran. Jundishapur Journal of Microbiology. https://doi.org/10.5812/jjm.8606
Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science. https://doi.org/10.1126/science.271.5251.933
Alizadeh, H.; Salouti, M.; Shapouri, R. (2013). Intramacrophage antimicrobial effect of silver nanoparticles against Brucella melitensis 16M. Scientia Iranica. https://doi.org/10.1016/j.scient.2013.02.018
Amro, N. A.; Kotra, L. P.; Wadu-Mesthrige, K.; Bulychev, A.; Mobashery, S.; Liu, G. Y. (2000). High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir. https://doi.org/10.1021/la991013x
Andeani, J. K.; Kazemi, H.; Mohsenzadeh, S.; Safavi, A. (2011). Biosynthesis of gold nanoparticles using dried flowers extract of Achillea wilhelmsii plant. Digest Journal of Nanomaterials and Biostructures.
Caballero-Ortega, H.; Pereda-Miranda, R.; Abdullaev, F. I. (2007). HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry. https://doi.org/10.1016/j.foodchem.2005.11.020
Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress. https://doi.org/10.1021/bp0501423
Donelli, G.; Vuotto, C. (2014). Biofilm-based infections in long-term care facilities. In Future Microbiology. https://doi.org/10.2217/fmb.13.149
Doughari, H.J.; Ndakidemi, P. A.; Human, I. S.; Benade, S. (2011). The ecology, biology and pathogenesis of acinetobacter spp.: An overview. Microbes and Environments. https://doi.org/10.1264/jsme2.ME10179
Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2015.1077192
Gliga, A. R.; Skoglund, S.; Odnevall Wallinder, I.; Fadeel, B.; Karlsson, H. L. (2014). Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology. https://doi.org/10.1186/1743-8977-11-11
Gordon, N. C.; Wareham, D. W. (2010). Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. In International Journal of Antimicrobial Agents. https://doi.org/10.1016/j.ijantimicag.2009.10.024
Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y.; Kim, Y. K.; Lee, Y. S.; Jeong, D. H.; Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine. https://doi.org/10.1016/j.nano.2006.12.001
Lara, H. H.; Garza-Treviño, E. N.; Ixtepan-Turrent, L.; Singh, D. K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. In Journal of Nanobiotechnology. https://doi.org/10.1186/1477-3155-9-30
Maisonneuve, E.; Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. In Cell. https://doi.org/10.1016/j.cell.2014.02.050
Mittal, A. K.; Chisti, Y.; Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. In Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2013.01.003
Nadworny, P. L.; Wang, J. F.; Tredget, E. E.; Burrell, R. E. (2008). Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine: Nanotechnology, Biology, and Medicine. https://doi.org/10.1016/j.nano.2008.04.006
Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamal, P.; Zbořil, R.; Kvítek, L. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. https://doi.org/10.1016/j.biomaterials.2009.07.065
Philip, D.; Unni, C. (2011). Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E: Low-Dimensional Systems and Nanostructures. https://doi.org/10.1016/j.physe.2010.10.006
Pourhajibagher, M.; Hashemi, F. B.; Pourakbari, B.; Aziemzadeh, M.; Bahador, A. (2016). Antimicrobial Resistance of Acinetobacter baumannii to Imipenem in Iran: A Systematic Review and Meta-Analysis. The Open Microbiology Journal. https://doi.org/10.2174/1874285801610010032
Rai, M. K.; Deshmukh, S. D.; Ingle, A. P.; Gade, A. K. (2012). Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. In Journal of Applied Microbiology. https://doi.org/10.1111/j.1365-2672.2012.05253.x
Rogers, J. V.; Parkinson, C. V.; Choi, Y. W.; Speshock, J. L.; Hussain, S. M. (2008). A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters. https://doi.org/10.1007/s11671-008-9128-2
Shahverdi, A. R.; Fakhimi, A.; Shahverdi, H. R.; Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology, and Medicine. https://doi.org/10.1016/j.nano.2007.02.001
Shameli, K.; Ahmad, M. B.; Jazayeri, S. D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y. (2012). Investigation of antibacterial properties silver nanoparticles prepared via green method. Chemistry Central Journal. https://doi.org/10.1186/1752-153X-6-73
Sondi, I.; Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2004.02.012
Song, J. Y.; Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-008-0224-6
Stojkovska, J.; Petrovic, P.; Jancic, I.; Milenkovic, M. T.; Obradovic, B. (2019). Novel nano-composite hydrogels with honey effective against multi-resistant clinical strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-019-10055-2
Sydnor, E. R. M.; Perl, T. M. (2011). Hospital epidemiology and infection control in acute-care settings. Clinical Microbiology Reviews. https://doi.org/10.1128/CMR.00027-10
Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. In Nanomedicine: Nanotechnology, Biology, and Medicine. https://doi.org/10.1016/j.nano.2009.07.002
Veerasamy, R.; Xin, T. Z.; Gunasagaran, S.; Xiang, T. F. W.; Yang, E. F. C.; Jeyakumar, N.; Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society. https://doi.org/10.1016/j.jscs.2010.06.004
Wang, H.; Guo, P.; Sun, H.; Wang, H.; Yang, Q.; Chen, M.; Xu, Y.; Zhu, Y. (2007). Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese Hospitals. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.01259-06
World Health Organization, (Who). (2011). Report on the Burden of Endemic Health Care-Associated Infection Worldwide. WHO Library Cataloguing-in-Publication Data. | ||
آمار تعداد مشاهده مقاله: 234 تعداد دریافت فایل اصل مقاله: 293 |