| تعداد نشریات | 48 |
| تعداد شمارهها | 1,242 |
| تعداد مقالات | 10,688 |
| تعداد مشاهده مقاله | 21,873,982 |
| تعداد دریافت فایل اصل مقاله | 14,703,049 |
Study on the effective decontamination and hydrolysis of sulfur mustard agent simulant using tenorite (CuO) nanoparticles as a destructive catalyst | ||
| Iranian chemical communication | ||
| مقاله 5، دوره 3، Issue 2, pp. 72-147, Serial No. 7، تیر 2015، صفحه 105-113 اصل مقاله (1.2 M) | ||
| نوع مقاله: Original Research Article | ||
| نویسندگان | ||
| Meysam Sadeghi* 1؛ Sina Yekta2؛ Mirhassan Hosseini3؛ Mohammad javad Taghizadeh1 | ||
| 1Department of Chemistry, University of Imam Hussein Comprehensive, PB BOX 995-16765, Tehran, Iran | ||
| 2Department of chemistry, Faculty of Basic Sciences, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran | ||
| 3Department of chemistry, Faculty of Basic Sciences, Imam Hussein Comprehensive University (IHCU), Tehran, Iran, | ||
| چکیده | ||
| In the present study, tenorite (CuO) nanoparticles have been assayed for their catalytic properties. The decontamination reaction of chloro ethyl ethyl sulfide (CEES) as an surrogate of sulfur mustard simulant have been accomplished on the surface of CuO NPs with different weight ratios at ambient temperature and monitored by Gas chromatography equipped with Flame ionization detector (GC-FID) and Gas chromatography coupled with a mass spectroscopy (GC-MS). CuO NPs were successfully synthesized via precipitation method in the absence and presence of polyvinylpyrrolydone (PVP) and copper (ΙΙ) nitrate as the precursors. PVP was used as a capping agent to control and reduce the agglomeration of the nanoparticles. The synthesized CuO NPs were characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The GC analysis results has revealed that the decontamination of CEES occurred in n-hexane solvent with the weight ratio of 1:40 (CEES: CuO NPs) after 12 h with more than 90% yield. The hydrolysis product such as hydroxyl ethyl ethyl sulfide (HEES) was also identified by GC-MS analysis. | ||
| کلیدواژهها | ||
| Tenorite (CuO) nanoparticles؛ chloroethyl ethyl sulfide (CEES)؛ decontamination؛ hydrolysis؛ Precipitation؛ polyvinylpyrrolydone (PVP) | ||
| مراجع | ||
|
[1] G.K. Prasad, T.H. Mahato, P. Pandey, B. Singh, A. Saxena, K Sekhar, Micropor. Mesopor. Mater., 2007, 106, 256261.
[2] G.W. Wagner, O. Koper, E. Lucas, S. Decker, K.J. Klabunde, J. Phys. Chem., 2000, 104, 51185123.
[3] M. Winter, D. Hamal, X. Yang, H. Kwen, D. Jones, S. Rajagopalan, , K.J, Klabune, Chem Mater., 2006, 21, 23672374.
[4] M.E. Martin, R.M. Narske, K.J. Klabunde, Micropor. Mesopor. Mater., 2005, 83, 47-50.
[5] Sh. Rajagopalan, O. Koper, Sh. Decker, K. J. Klabunde, Chem. Eur. J., 2002, 8, 2602-2607.
[6] J.V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde, Chem. Mater., 1996, 8, 1904-1912.
[7] Y. Li, O. Koper, K.J. Klabunde, Chem. Mater., 1992, 4, 323-330.
[8] O. Koper, K.J. Klabunde, U.S. Pat., 2000, 605, 7488-7490.
[9] S. Utampanya, K.J. Klabunde, J.R. Schlup, Chem. Mater., 1991, 3, 175-181.
[10] M. Joseph, H Tabata, T. Kawai, J. Appl. Phys., 1999, 2, 517-521.
[11] U. Ozgr, Y.I. Alivov, C Liu, A. Teke, M. A. Reshchikov, V. Avrutin, S. J. Cho, H. Mork, J. Appl. Phys., 2004, 98, 5610-5616.
[12] A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol., 2005, 20, 78-91.
[13] R. Schmidt, B. Rheinlnder, M. Schubert, D. Spemann, T. Butz, J. Lenzner, M.E. Kaidashev, M. Lorenz, A. Rahm, H.C. Semmelhack, M. Grundmann, Appl. Phys. Lett., 2003, 82, 2260-2262.
[14] F. Wang, B. Liu, Z. Zhang, S. Yuan, Physica E., 2009, 41, 879–882.
[15] S.P. Gubin, Yu. A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Rus. Chem. Rev., 2005, 74, 489.
[16] Y. Liu, P. Liang, L. Guo, Talanta., 2005, 68, 25-30.
[17] J.G. Ekerdt, K.J. Klabunde, J.R. Shapley, J.M. White, J.T. Yates, J. Phys. Chem., 1988, 92, 61826188.
[18] D.B. Mawhinney, J.A. Rossin, K. Gehart, J.T. Yates, Langmuir., 1999, 15, 47894795.
[19] G.W. Wagner, P.W. Bartram, O. Koper, K.J. Klabunde, J. Phys. Chem., 1999, 103, 32253228.
[20] J.V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde, Chem. Mater., 1996, 8, 19041912.
[21] Gamberini et al, U.S. Pat., 1998, 27, 14-20.
[22] P.W. Bartram, G.W. Wagner, U.S. Pat. 1997, 5 689-695.
[23] J. Praveen Kumar, G.K. Prasad, P.V.R.K. Ramacharyulu, P. Garg, K. Ganesan, Mater. Chem. Phys., 142 (2013) 484-490.
[24] Ch. Li, Y. Yin, H. Hou, N. Fan, F. Yuan, Y. Shi, Q. Meng, Solid. State. Commun., 2010, 150, 585-589.
[25] N. Topnani, S. Kushwaha, T. Athar, Int. J. Mater. Sci. Eng., 2009, 1, 67-73.
[26] M. Salavati-Niasari, F. Davar, Mater. Lett., 2009, 63, 441-443.
[27] J. Ying, Li, Sh. Xiong, B. Xi, X.G. Li, Y. T. Qian, Cryst. Growth. Des., 2009, 9, 4108-4115.
[28] D. Shang, K. Yua, Y. Zhang, J. Xu, J. Wu, Y. Xu, L. Li, Z. Zhu, Appl. Surface. Sci., 2009, 255, 4093-4098.
[29] R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater., 2000, 12, 2301-2305.
[30] A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov, Y.D. Tretyakov, Mater. Res. Innov., 2000, 3, 308-312.
[31] J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Solid. State. Chem., 2000, 147, 520-526.
[32] K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shripathi, S. Mahamuni, Phys. Rev., 2000, 61, 11093-11098.
[33] J.Q. Yu, Z. Xu, D.Z. Jia, Chin. J., Func. Mater. Instrum., 1999, 5, 267-273.
[34] S. Nakao, M. Ikeyama, T. Mizota, P. Jin, M. Tazawa, Y. Miyagawa, S. Miyagawa, S. Wang, L. Wang, Rep. Res. Cent. Ion Beam Technol., 2000, 18, 153.
[36] N. Toshima, T. Yonezawa, New. J. Chem., 1998, 22, 1179120.
[37] P. Lahirri, S.K. Sengupta, Can. J. Chem., 1991, 69, 33-36.
[38] M. Sadeghi, M. H.Hosseini, J. Appl. Chem. Res., 2013, 7, 39-49.
[39] A. Patterson, Phys. Rev., 1939, 56, 978–982.
[40] H.R. Shakur, Physica E., 2011, 44, 641–646.
| ||
|
آمار تعداد مشاهده مقاله: 3,536 تعداد دریافت فایل اصل مقاله: 2,598 |
||