تعداد نشریات | 41 |
تعداد شمارهها | 1,112 |
تعداد مقالات | 9,520 |
تعداد مشاهده مقاله | 17,160,754 |
تعداد دریافت فایل اصل مقاله | 12,017,509 |
محاسبه ضرایب تمرکز دینامیکی ناشی از امواج طولی و برشی در محیط الاستیک دارای ناخالصی کروی پیزوالکتریک | ||
فصلنامه علمی اپتوالکترونیک | ||
دوره 5، شماره 1 - شماره پیاپی 12، اسفند 1401، صفحه 83-96 اصل مقاله (1.41 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/jphys.2023.68130.1145 | ||
نویسندگان | ||
محسن غلامی* ؛ محمدطاهر کمالی؛ بابک شکرالهی زاده | ||
گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه هرمزگان، بندرعباس، ایران | ||
چکیده | ||
رفتار جفتشدگی الکترومکانیکی مواد پیزوالکتریک مرکب در صنایع مختلف نقش مهمی دارد. بررسی و مطالعه انتشار و پراکندگی امواج در چنین موادی برای درک خصوصیات و رفتار دینامیکی آنها ضروری است. در این پژوهش با استفاده از یک روش تحلیلی دقیق، میدانهای الکترومکانیکی ناشی از پراکندگی امواج صفحهای توسط یک ذره کروی پیزوالکتریک دارای همسانگرد کروی تعبیه شده در یک محیط پلیمری همسانگرد نامحدود مورد مطالعه قرار گرفته است. در فرمول ارائه شده هیچ محدودیتی در محدوده فرکانس موج ورودی وجود ندارد. ضرایب تمرکز تنش دینامیکی و ضریب تمرکز جابه جایی الکتریکی دینامیکی در سطح مشترک ذره پیزوالکتریک و محیط محاسبه شدهاند. سپس، اثر فرکانس موج ورودی بر مقادیر حداکثر ضرایب تمرکز تنش دینامیکی و مقدار حداکثر ضریب تمرکز جابه جایی الکتریکی دینامیکی و همچنین مکانهای وابسته به آنها برای امواج برشی و طولی مقایسه شدهاند. | ||
کلیدواژهها | ||
امواج طولی؛ امواج برشی؛ ذره پیزوالکتریک کروی؛ ضریب تمرکز تنش دینامیکی؛ ضریب تمرکز جابجایی الکتریکی دینامیکی | ||
عنوان مقاله [English] | ||
Calculation of Dynamic Concentration Factors Due to Longitudinal and Shear Waves in an Elastic Medium with a Spherical Piezoelectric Impurity | ||
نویسندگان [English] | ||
Mohsen Gholami؛ Mohammad Taher Kamali؛ Babak Shokrolahi-Zadeh | ||
Department of Civil Engineering, Faculty of Engineering, University of Hormozgan, Bandar Abbas, Iran | ||
چکیده [English] | ||
The electromechanical coupling behavior of composite piezoelectric materials plays an important role in various industries. Therefore, it is necessary to investigate and study the propagation and scattering of waves in such materials in order to understand their properties and dynamic behavior. in this study, using an exact analytical method, electromechanical fields due to the scattering of plane waves by a piezoelectric spherical particle with spherical isotropic embedded in an unlimited isotropic polymer matrix has been studied. In the present formulation, there is no restriction on the range of the frequency of the incident wave. The dynamic stress concentration factors and the dynamic electric displacement concentration factor at the piezoelectric particle-matrix interface were calculated. Subsequently, the effect of the frequency of the incident wave on the maximum values of the dynamic stress concentration factors and maximum value of the dynamic electric displacement concentration factor as well as their appurtenant locations for shear and longitudinal waves compared | ||
کلیدواژهها [English] | ||
Longitudinal Waves, Shear Waves, Spherical Piezoelectric Particle, Dynamic Stress Concentration Factor, Dynamic Electric Displacement Concentration Factor | ||
مراجع | ||
[1] Paskaramoorthy R, Kienhöfer F, Chandler HD. The response of particle-reinforced composites to asymmetric dynamic loads. Composites Science and Technology. 2002;62(2):223-32.
[2]. Fang X-Q, Hu C, Huang W-H. Scattering of elastic waves and dynamic stress in two-particle reinforced composite system. Mechanics of Materials. 2007;39(6):538-47.
[3]. Bugarin S, Paskaramoorthy R, Reid RG. Influence of the geometry and material properties on the dynamic stress field in the matrix containing a spheroidal particle reinforcement. Composites Part B: Engineering. 2012; 43(2):272-9.
[4]. Ru Y, Wang GF, Su LC, Wang TJ. Scattering of vertical shear waves by a cluster of nanosized cylindrical holes with surface effect. Acta Mechanica. 2013; 224(5):935-44.
[5]. Liu X, Wei P, Wang L, Zhang G. Single and Multiple Scattering of Inplane Waves by Nanofibers with Consideration of Interface Effects. Mechanics of Composite Materials. 2014;50(3):317-28.
[6]. Yan R. Surface Effect on Diffractions of Elastic Waves and Stress Concentration near a Cluster of Cylindrical Nanoholes Arranged as Quadrate Shape. Advances in Materials Science and Engineering. 2015; 2015: 134975.
[7]. Ghanei Mohammadi AR, Hosseini Tehrani P. Effect of surface elasticity on scattering of elastic P-waves from a nanofiber including an inhomogeneous interphase. Composite Interfaces. 2015; 22(2): 95-125.
[8]. Ghanei Mohammadi AR, Hosseini Tehrani P. Dynamic Stress Concentrations Due to Scattering of Elastic SV Waves from a Coated Nanoinclusion with Considerations in the Interfacial Region. Journal of Mechanics. 2017;33(3):279-88.
[9]. Kanaun S, Levin V, Markov M. Scattering problem for a spherical inclusion in poroelastic media: Application of the asymptotic expansion method. International Journal of Engineering Science. 2018;128:187-207.
[10]. Jafarzadeh A, Folkow PD, Boström A. Scattering of elastic waves by a transversely isotropic sphere and ultrasonic attenuation in hexagonal polycrystalline materials. Wave Motion. 2022:102963.
[11]. Ma H, Wang B. The scattering of electroelastic waves by an ellipsoidal inclusion in piezoelectric medium. International Journal of Solids and Structures. 2005;42(16):4541-54.
[12]. Qian Z, Jin F, Wang Z, Kishimoto K. Investigation of scattering of elastic waves by cylinders in 1–3 piezocomposites. Ultrasonics. 2005; 43(10): 822-31.
[13]. Qian Z, Jin F, Kishimoto K, Lu T. Scattering of elastic P-waves by a transversely isotropic piezoelectric cylinder embedded in a polymer matrix. Smart materials and structures. 2008;17(4): 045019.
[14]. Kamali MT, Shodja HM. The scattering of electro-elastic waves by a spherical piezoelectric particle in a polymer matrix. International Journal of Engineering Science. 2006;44(10):633-49.
[15]. Kamali MT, Shodja HM. The scattering of P-waves by a piezoelectric particle with FGPM interfacial layers in a polymer matrix. International Journal of Solids and Structures. 2010; 47(18): 2390-7.
[16]. Fang X-Q, Liu J-X, Wang X-H, Zhang T, Zhang S. Dynamic stress from a cylindrical inclusion buried in a functionally graded piezoelectric material layer under electro-elastic waves. Composites Science and Technology. 2009;69(7):1115-23.
[17]. Shodja HM, Jarfi H, Rashidinejad E. The electro-elastic scattered fields of an SH-wave by an eccentric two-phase circular piezoelectric sensor in an unbounded piezoelectric medium. Mechanics of Materials. 2014;75:1-12.
[18]. Shi Y, Wan Y. Anti-plane time-harmonic Green's functions for a circular inhomogeneity in piezoelectric medium with a spring-or membrane-type interface. Mechanics Research Communications. 2015;70:24-41.
[19]. Fang X-Q, Liu H-W, Feng W-J, Liu J-X. Size-dependent effects on electromechanical response of multilayer piezoelectric nano-cylinder under electro-elastic waves. Composite Structures. 2015;125:23-8.
[20]. Kuo H-Y, Huang Y-A, Sun C-H. Scattering of anti-plane shear waves by arbitrarily distributed circular cylinders in a functionally graded multiferroic fibrous composite. Acta Mechanica. 2018;229(4):1483-501.
[21]. Ghafarollahi A, Shodja H. Scattering of transverse surface waves by a piezoelectric fiber in a piezoelectric half-space with exponentially varying electromechanical properties. Zeitschrift für angewandte Mathematik und Physik. 2019;70(2):1-19.
[22]. Jam MT, Shodja HM. Interface effects on the electromagnetic radiation emanating from an embedded piezoelectric nano-fiber incident upon by SH-waves. Wave Motion. 2020;94: 102513.
[23]. Qi H, Chu F, Liu G, Guo J. Dynamic analysis of piezoelectric materials with an elliptical hole under the action of shear horizontal waves. Mechanics of Materials. 2022;169: 104323.
[24]. Gholami M, Kamali M, Shodja H, Shokrolahi-Zadeh B. A buried piezoelectric spherical particle incident upon by plane shear waves. Applied Mathematical Modelling. 2023;113:71-87.
[25]. Eringen A, Suhubi E. Elastodynamics. Volume 2- Linear theory(Book). New York, Academic Press, Inc, 1975 671 p. 1975.
[26]. Pao Y-H, Mow C-C. Diffraction of elastic waves and dynamic stress concentrations: Russak; 1971.
[27]. Wang G. Diffraction of shear waves by a nanosized spherical cavity. Journal of Applied Physics. 2008; 103(5): 053519.
[28]. Wang G, Feng X, Yu S. Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. Journal of Applied Physics. 2007;102(4):043533.
[29]. Chen W-Q. Problems of radially polarized piezoelastic bodies. International Journal of Solids and Structures. 1999;36(28):4317-32.
[30]. Chen W, Ding H, Xu R. Three-dimensional static analysis of multi-layered piezoelectric hollow spheres via the state space method. International Journal of Solids and Structures. 2001;38(28-29):4921-36.
[31]. Berlincourt DA, Curran DR, Jaffe H. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics: Principles and Methods. 1964;1(Part A):202-4. | ||
آمار تعداد مشاهده مقاله: 106 تعداد دریافت فایل اصل مقاله: 122 |