
تعداد نشریات | 41 |
تعداد شمارهها | 1,161 |
تعداد مقالات | 10,016 |
تعداد مشاهده مقاله | 18,738,172 |
تعداد دریافت فایل اصل مقاله | 13,006,833 |
Computational Prediction of Dobutamine Redox Potential: Theoretical and Experimental Investigation | ||
Iranian Journal of Analytical Chemistry | ||
مقاله 2، دوره 8، شماره 2 - شماره پیاپی 16، آذر 2021، صفحه 9-14 اصل مقاله (904.94 K) | ||
نوع مقاله: Full research article | ||
شناسه دیجیتال (DOI): 10.30473/ijac.2021.59942.1206 | ||
نویسندگان | ||
Reza Samimi1؛ Reza Mortazavi2؛ Simin Mansouri3؛ Zohre Fathi1؛ Foroozan Hasanpour* 1 | ||
1Department of Chemistry, Payam Noor University, P.O. Box 19395-4697, Tehran, Iran | ||
2Department of Agriculture, Payam Noor University, P.O. Box 19395-4697, Tehran, Iran | ||
3Department of Statistics, Payam Noor University, P.O. Box 19395-4697, Tehran, Iran | ||
چکیده | ||
Computational and experimental approach on standard redox potential of dobutamine was developed in aqueous media. A direct and indirect calibrated B3LYP/6-311++G (d, p) method predicted the aqueous phase redox potential of dobutamine as 0.850 V Respectively. The electronic densities of dobutamine calculation at oxidation and reduction state in HOMO and LUMO proved that energies of dobutamine LUMO in oxidation form are lower than dobutamine LUMO in reduction. Therefore, the electron transfer from HOMO to LUMO in dobutamine oxidation form is easier than in dobutamine reduction form. The experimental E° was obtained using cyclic voltammetry at activated glassy carbon electrode as 0.79V versus SHE. The results show that there is a satisfactory agreement between the experimental and computational standard potential value of dobutamine. | ||
کلیدواژهها | ||
Dobutamine؛ Density Functional Theory؛ Standard Electrode Potential؛ Cyclic Voltammetry | ||
عنوان مقاله [English] | ||
پیش بینی پتانسیل ردوکس دوبوتامین: بررسی محاسباتی و تجربی | ||
نویسندگان [English] | ||
رضا صمیمی1؛ رضا مرتضوی2؛ سیمین منصوری3؛ زهره فتحی1؛ فروزان حسن پور1 | ||
1گروه شیمی، دانشگاه پیام نور، تهران، ایران | ||
2گروه کشاورزی، دانشگاه پیام نور، تهران، ایران | ||
3گروه آمار، دانشگاه پیام نور، تهران، ایران | ||
چکیده [English] | ||
روش تجربی و محاسباتی برای تعیین پتانسیل ردوکس دوبوتامین ارائه شد. روش مستقیم و غیر مستقیم با استفاده از تکنیک B3LYP/6-311++G (d, p) کالیبره شده در محیط آبی پتانسیل ردوکس دوبوتامین را 85/0 ولت پیش بینی کرد. محاسبات دانسیته الکترونی دوبوتامین در حالت اکسیداسیون و احیاء داخل اوربیتالهای HOMO وLUMO ثابت کرد که انرژی اوربیتالLUMO دوبوتامین در حالت اکسیداسیون کمتر از حالت کاهش یافته آن میباشد. بنابراین انتقال الکترون از اوربیتال HOMO به LUMO فرم کاهش یافته دوبوتامین سادهتر از فرم کاهش یافته آن میباشد. مقدار تجربی E° دوبوتامین با استفاده از ولتامتری چرخهای بر روی الکترود کربن شیشهای فعال شده 79/0 ولت نسبت به SHE بدست آمد. نتایج نشان داد که یک توافق رضایتبخشی بین مقدار تجربی و محاسباتی پتاانسیل استاندارد دوبوتامین وجود دارد. | ||
کلیدواژهها [English] | ||
دوبوتامین, تئوری تابعی چگالی, پتانسیل استاندارد الکترود, ولتامتری چرخه ای | ||
مراجع | ||
[1] H. Vasconcelos, L.C. Coelho, A. Matias, C. Saraiva, P.A. Jorge, J. M. de Almeida. Biosensors for Biogenic Amines: A Review. Biosensors, 11 (2021) 82.
[2] C. Capitain, W. Sebastian, H. Joana, T. Nils, Investigation of C–N formation between catechols and chitosan for the formation of a strong, novel adhesive mimicking mussel adhesion. Waste and Biomass Valorization, 12 (2021) 1761.
[3] M. Heringlake, A. Julian, B. Dominique, B. Stefaan, F. Sonja, G. Massimo, G. Elena, G. Fbio, H. Antoine, T. Wolfgang, T. Luigi, P. Piero, An update on levosimendan in acute cardiac care: applications and recommendations for optimal efficacy and safety. Expert Rev. Cardiovasc. Ther. 19 (2021) 325.
[4] M.J. Jaguszewski, G. Aleksandra. T. Radoslaw, J.F. Krzysztof, S. Lukasz, Efficacy and safety of levosimendan and dobutamine in heart failure: A systematic review and meta-analysis. Cardiol. J. 28(2021)492..
[5] T.V. Astaf’eva, M.V. Arsenyev, R.V. Rumyantcev, G.K. Fukin. V.K. Cherkasov, A.I. Poddel’sky, Imine-Based Catechols and o-Benzoquinones: Synthesis, Structure, and Features of Redox Behavior. ACS omega, 5 (2020) 22179.
[6] B. Sun, D. Feng, M.L.H. Chu, I. Fish, S. Lovera, Z.A. Sands, S. Kelm, A. Valade, M. Wood, T. Ceska, T.S. Kobilka, F. Lebon, B.A. Kobilka, Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nature communications, 12 (2021) 1.
[7] S. Riahi, M.R. Ganjali, H. Khajehsharifi, P. Norouzi, S. Taghipoor. Theoretical and experimental studies on some anticancer derivatives: Electrochemical investigation. Int. J. Electrochem. Sci, 4 (2009)122.
[8] A.R.L. Da Silva, A.J. Dos Santos, C.A. Martinez-Huitle. Electrochemical measurements and theoretical studies for understanding the behavior of catechol, resorcinol and hydroquinone on the boron doped diamond surface. RSC Adv., 8 (2018) 3483.
[9] F. Hasanpour, M. Nekoeinia, A. Semnani, R. Shirazinia. Synthesis of semicarbazide catechol derivative as a potential electrode modifier: application in electrocatalysis of catechol amine drugs. Chem. Pap, 73 (2019) 2081.
[10] Y. Zhang, M. Zhaomin, Electrochemical Behavior of Hydroquinone at Poly (Acridine Orange)–Modified Electrode and Its Separate Detection in the Presence of o‐Hydroquinone and m‐Hydroquinone. Anal. Lett, 39 (2006) 1289.
[11] A. P. Davis, A. J. Fry, Experimental and computed absolute redox potentials of polycyclic aromatic hydrocarbons are highly linearly correlated over a wide range of structures and potentials. J. Phys. Chem A, 114 (2010) 12299.
[12] T. Matsui, S. Jong-Won. A Density Functional Theory-Based Scheme to Compute the Redox Potential of a Transition Metal Complex: Applications to Heme Compound. Molecules, 24 (2019) 819.
[13] M.M. Liu, Sh.M. Han, X.W. Zheng, L.L. Han, T. Liu, Zh.Y. Yu. Experimental and theoretical prediction of the redox potential of dopamine and its supramolecular complex with glycine. Int. J. Electrochem. Sci, 10 (2015) 235.
[14] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117.
[15] M. Namazian, H.R. Zare, M.L. Coote. Determination of the absolute redox potential of Rutin: Experimental and theoretical studies. Biophysical chemistry, 132 (2008) 64.
[16] X. Yan, U. J. Charlotte, F. Diao, K. Qvortrup, D. Tanner, J. Ulstrup, X. Xiao. Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochem. commun., 124 (2021) 106962.
[17] F. Hasanpour, M. Nekoeinia, A. Semnani, S. Shojaei. NiMnO3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine. Microchem. J., 142 (2018) 17.
[18] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.
[19] A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, IUPAC: Marcel Dekker, Inc., New York, 1985. [20] S. Shahrokhian, M. Ghalkhani, R. Kohansal, R. Mohammadi, Biomimetic sensor for dobutamine employing nano-TiO2/nafion/carbon nanoparticles modified electrode, Electroanalysis 28 (2016) 970.
[21] S. Palanisamy, S.K. Ramaraj, S.M. Chen, V. Velusamy, T.C.K. Yang, T.W. Chen, Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine, Microchim. Acta 184 (2017) 1051.
[22] M. Namazian, H.A. Almodarresieh, M.R. Noorbala, H.R. Zare, DFT calculation of electrode potentials for substituted quinones in aqueous solution, Chem. Phys. Lett. 396 (2004) 424
[23] M.D. Liptak, K.G. Gross, P.G. Seybold, S. Feldgus, G.C. Shields, Absolute pKa determinations for substituted phenols, J. Am. Chem. Soc.124 (2002) 6421.
[24] D. Chaparro, J. Alí-Torres. Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes. Journal of molecular modeling, 23 (2017): 1-8.
[25] N.Rega, M.Cossi, V. Barone. Improving performance of polarizable continuum model for study of large molecules in solution. J. Comput. Chem. 20 (1999) 1186.
[26] M. D. Liptak,G. C. Shields. Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Iran. Chem. Commun. 85 (2001) 727.
[27] M.M. Liu, S.M. Han, X.W. Zheng, L. L. Han, T. Liu, Z.Y. Yu, Experimental and Theoretical Prediction of The Redox Potential of Dopamine and Its Supramolecular Complex With Glycine. Int. J. Electrochem. Sci., 10(2015) 235.
[28] R.SamimiShalamzari, S.Mansouri, A.Eghbali. Determination of the absolute redox potential of methyldopa: experimental and simulation methods. Iran. Chem. Commun, 3 (2015) 348. | ||
آمار تعداد مشاهده مقاله: 572 تعداد دریافت فایل اصل مقاله: 389 |