- S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666–669.
- Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T.Nguyen, R.S. Ruoff, Graphene based-composite materials, Nature, 442 (2006) 282–286.
- S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets, Science, 315 (2007) 490–493.
- Deng, M. Zhu, T. Jin, C. Cheng, J. Zheng, Y. Qian, One-step synthesis of nitrogen, sulphur-codoped graphene as electrode material for supercapacitor with excellent cycling stability, Int. J. Electrochem. Sci. 15 (2020) 16–25.
- Liu, C.K. Poh, D. Zhan, L. Lai, S.H. Lim, L. Wang, X. Liu, N.G. Sahoo, C. Li, Z. Shen, Improved synthesis of grapheneflakes from the multiple electrochemical exfoliation of graphite rod, Nano Eng. 2 (3) (2013) 377–386.
- Fan, Y. Xu, T. Sheng, D. Zhao, H. Yuan, F. Liu, X. Liu, X. Zhu, L. Zhang, J. Lu, Amperometric sensor for dopamine based on surface-graphenization pencil graphite electrode prepared by in-situ electrochemical delamination, Microchim. Acta 186 (5) (2019) 324.
- -H. Chen, S.-W. Yang, M.-C. Chuang, W.-Y. Woon, C.-Y. Su, Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation, Nanoscale 7 (37) (2015) 15362–15373.
- Vasseghian, D. Elena-Niculina, M. Moradi, and A. Mousavi Khaneghah. A review on graphene-based electrochemical sensor for mycotoxins detection, Food and Chemical Toxicology 148 (2021) 111931.
- Gupta, C. N. Murthy, and C. R. Prabha. Recent advances in carbon nanotube based electrochemical biosensors. International journal of biological macromolecules 108 (2018) 687-703.
- Song, Z. Xiaoyuan, L. Yunfang, and S. Zhiqiang. Developing Graphene‐Based Nanohybrids for Electrochemical Sensing, The Chemical Record 19 (2019) 534-549.
- Lakra, R. Kumar, P. K. Sahoo, D. Thatoi, and A. Soam. A mini-review: Graphene based composites for supercapacitor application, Inorganic Chemistry Communications 133 (2021) 108929.
- I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State munications, 146 (2008) 351–355.
- A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters, 8(2008) 902–907.
- Beitollai, S. Mohadeseh, and S. Tajik. "Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review." Int. J. Nano Dim. 10, no. 2 (2019): 125-140.
- Kumar, N. Venkatesh, H. Bhowmik, & A. Kuila, Metallic nanoparticle: a review. Biomed. J. Sci. & Tech. Rese.4(2) (2018) 3765-3775.
- Wu, Z. Jianhua, and H. Lu, A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment, Carbon 143 (2019) 610-640.
- Zhao, W. Zhenhui, Q. Li, Fabrication of a nichrome electrode coated with silver microcrystals, and its application to sensing hydrogen peroxide, Anal. Methods, 4(2012) 1105-1109.
- C. Pereira, M.V.B. Zanoni, Voltammetric sensor for sodium nitroprusside determination in biological fluids using films of poly-L-lysine, Electroanalysis, 19 (2007( 993– 998.
- -B. Raoof, R. Ojani, and S. Rashid-Nadimi, Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid, Electrochim. Acta., 49(2004) 271–280.
- Y Huang, F Bao, M Ji, Y Hu, L Huang, H Liu, J. Yu, G. Cong, C. Zhu, and J. Xu. A polyaniline-modified electrode surface for boosting the electrocatalysis towards the hydrogen evolution reaction and ethanol oxidation reaction, Chem. Commun. 57, no. 100 (2021) 13792-13795.
- V. de Melo, M.E. Bello, W.M. de Azevêdo, J.M. de Souza, F.B. Diniz, The effect of glutaraldehyde on the electrochemical behavior of polyaniline, Electrochim. Acta., 44 (1999) 2405–2412.
- Zhang, Z. Wang, Y. Zhang, Z. Zheng, C. Wang, Y. Du, W. Ye, Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode, Talanta, 93 (2012) 320–325.
- Liu, L. Luo, Y. Ding, D. Ye, Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan, Bioelectrochemistry, 82 (2011) 38–45.
- Saeb, K. Asadpour-Zeynali, Facile synthesis of TiO2@ PANI@ Au nanocomposite as an electrochemical sensor for determination of hydrazine, Microchem. J. 160 (2021) 105603.
- Wang, J. Ding, P. Kannan, S. Ji, Cobalt nanoparticles intercalated nitrogen-doped mesoporous carbon nanosheet network as potential catalyst for electro-oxidation of hydrazine, Int. J. Hydrog. Energy. 45 (38) (2020) 19344-19356.
- S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
- J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.
- Chong, Z. Mei, L. Shanshan, G. Xinlei, W. Wei, H. Guanghui, Determination of hydrazine in prednisolone by derivatization-gas chromatography-triple quadrupole mass spectrometry, Chin. J. Chromatogr. 39 (7) (2021) 750.
- Habibi, S. Pashazadeh, L.A. Saghatforoush and A. Pashazadeh. "Direct electrochemical synthesis of the copper based metal-organic framework on/in the heteroatoms doped graphene/pencil graphite electrode: Highly sensitive and selective electrochemical sensor for sertraline hydrochloride." J. Electroanal. Chem.888 (2021) 115210-115222.
- Habibi, S. Pashazadeh, L. A. Saghatforoush, and A. Pashazadeh, A thioridazine hydrochloride electrochemical sensor based on zeolitic imidazolate framework-67-functionalized bio-mobile crystalline material-41 carbon quantum dots. New J. Chem. 45 (32) ( 2021) 14739-50.
- Karim-Nezhad, R. Jafarloo, P. Seyed Dorraji, Copper (hydr) oxide modified copper electrode for electrocatalytic oxidation of hydrazine in alkaline media, Electrochim. Acta., 54 )2009( 5721– 5726.
- D.D.C. Conceicao, R.C. Faria, O. Fatibello-Filho, A.A. Tanaka, Electrocatalytic oxidation and voltammetric determination of hydrazine in industrial boiler feed water using a cobalt phthalocyanine-modified electrode, Anal. Lett. 41 (2008) 1010–1021.
- R. Majidi, A. Jouyban, K. Asadpour-Zeynali, Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode, J. electrochim. Acta., 52 ( 2007) 6248–6253.
- Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode, J. Electroanal.Chem., 631 (2009) 52–57.
- Nasirizadeh, H.R. Zare, A.R. Fakhari, H. Ahmar, M.R. Ahmadzadeh, A. Naeimi, A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor, J. Solid State Electrochem., 15 (2011) 2683–2693.
- Zhang, J. Huang, H. Hou, T. You, Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/carbon nanofibers, Electroanalysis, 21 (2009) 1869–1874.
- Ji, C.E. Banks, A.F. Holloway, K. Jurkschat, C.A. Thorogood, G.G. Wildgoose, R.G. Compton, Palladium Sub-Nanoparticle Decorated ‘Bamboo’ Multi-Walled Carbon Nanotubes Exhibit Electrochemical Metastability: Voltammetric Sensing in Otherwise Inaccessible pH Ranges, Electroanalysis, 18 (2006) 2481–2485.
- A. Ensafi, E. Mirmomtaz, Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode, J. Electroanal.Chem., 583 (2005) 176–183.
- Ahmar, S. Keshipour, H. Hosseini, A.R. Fakhari, A. Shaabani, A. Bagheri, Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles, J. Electroanal. Chem., 690(2013) 96–103.
- Karim-Nezhad, L. Samandari, Thiourea Modified Copper Electrode: Application to Electrocatalytic Oxidation of Hydrazine, Anal. Bioanal. Electrochem, 6 (2014) 545-558.
- Yi and W. g. Yu, Nanoporous gold particles modified titanium electrode for hydrazine oxidation, J. Electroanal. Chem., 633 (2009) 159–164.
- Afzali, H.K. Maleh, M.A. Khalilzadeh, Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nanotube paste electrode, Environ. Chem. Lett., 9 (2011) 375–381.
- Rani, M. Kumar, Amperometric Determination of Hydrazine Based on Copper Oxide Modified Screen Printed Electrode, Sensors & Transducers. 223 (7) (2018) 22-25.
- Ning, X. Guan, J. Ma, M. Wang, X. Fan, G. Zhang, F. Zhang, W. Peng, Y. Li, A highly sensitive nonenzymatic H2O2 sensor based on platinum, ZnFe2O4 functionalized reduced graphene oxide, J. Alloys Compd. 738 (2018) 317-322.
- Zhou, P. Lu, Z. Zhang, Q. Wang, A. Umar, Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor, Sens. Actuators B Chem. 235 (2016) 457-465.
|