![سامانه مدیریت نشریات علمی دانشگاه پیام نور](./data/logo.png)
تعداد نشریات | 41 |
تعداد شمارهها | 1,138 |
تعداد مقالات | 9,761 |
تعداد مشاهده مقاله | 17,888,299 |
تعداد دریافت فایل اصل مقاله | 12,500,107 |
Optimal Control Problems: Convergence and Error Analysis in Reproducing Kernel Hilbert Spaces | ||
Control and Optimization in Applied Mathematics | ||
مقاله 4، دوره 6، شماره 2، مهر 2021، صفحه 53-77 اصل مقاله (598.42 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2022.59267.1164 | ||
نویسنده | ||
Ebrahim Amini* | ||
Department of Mathematics, Payame Noor University (PNU), P.O. Box. 19395-3697, Tehran, Iran | ||
چکیده | ||
In this article, we offer an efficient method to find an approximate solution for quadratic optimal control problems. The approximate solution is offered in a finite series form in reproducing kernel space. The convergence of proposed method is analyzed under some hypotheses which provide the theoretical basis of the proposed method for solving quadratic optimal control problems. Furthermore, in this study, we investigate the application of the proposed method to obtain the solution of equations that have formally been solved using Pontryagin's maximum principle. Moreover, many different types of quadratic optimal control problems are considered prototype examples. The obtained results demonstrate that the proposed method is truly effective and convenient to obtain the analytic and approximate solutions of quadratic optimal control problems. | ||
کلیدواژهها | ||
Optimal control problem؛ Pontryagin's maximum principle؛ Convergence؛ Reproducing kernel Hilbert space | ||
مراجع | ||
[1] Aronszajn, N. (1950). “Theory of reproducing kernels”, Transactions of the American Mathematical Society, 68, 337-404.
[2] Betts, J. T., Biehn, N., and Campbell, S. L., (2002). “Convergence of non-convergent IRK discretization of optimal control problems with state inequality constraints”, SIAM Journal on Scientific Computing, 23( 6), 1981–2007.
[3] Bouboulis, P., and Mavroforakis, M. (2011). “Reproducing Kernel Hilbert spaces and fractal interpolation”, Journal of Computational and Applied Mathematics, 235(12), 3425-3434.
[4] Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (1988). “Spectral methods in fluid dynamics”, Spinger-Verlag, Heidelberg, Germany.
[5] Chryssoverghi, I., Coletsos, J., and Kokkinis B., (2001). “Approximate relaxed descent method for optimal control problems”, Control and Cybernetics, 30(4), 385-404.
[6] Chryssoverghi, I., Coletsos I., and Kokkinis, B., (2006). “Discretization methods for optimal control problems with state constraints”, Journal of Computational and Applied Mathematics, 19(1), 1-31.
[7] Cialenco, I., Fasshauer, G. E., and Ye, Q. (2012). “Approximation of stochastic partial differential equations by a kernel-based collocation method”, International Journal of Computer Mathematics, 89(18), 2543–2561.
[8] Cui, M., and Geng, F. (2007). “A computational method for solving one-dimensional variable-coefficient Burgers equation. Applied Mathematics and Computation, 188(2), 1389–1401.
[9] Cui, M., and Lin, Y. (2009). “Nonlinear Numerical Analysis in Reproducing Kernel Space”, (UK ed.). Nova Science Publishers, Inc.
[10] EL-Gindy, T. M., EL-Hawary, H. M., Salim, M. S. and EL-Kady, M. (1995). “A Chebyshev approximation for solving optimal control problems”, Computers & Mathematical with Application, 29(6), 35-45.
[11] Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A., and Huntington, G. T. (2010). “A unified framework for the numerical solution of optimal control problems using pseudo spectral methods”, Automatica, 46(11), 1843–1851.
[12] Garrard, W. L., and Jordan, J. M. (1977). “Design of nonlinear automatic flight control systems”, Automatica, 13(5), 497–505.
[13] Geng, F. (2009). “Solving singular second-order three-point boundary value problems using reproducing kernel Hilbert space method”, Applied Mathematics and Computation, 215(6), 2095–2102.
[14] Geng, F. (2011). “A novel method for solving a class of singularly perturbed boundary value problems based on reproducing kernel method”, Applied Mathematics and Computation, 218(8), 4211–4215.
[15] Geng, F., and Cui, M. (2007). “Solving singular nonlinear second-order periodic boundary value problems in the reproducing kernel space”, Applied Mathematics and Computation, 192(2), 389–398.
[16] Geng, F., and Cui, M., (2007). “Solving a nonlinear system of second order boundary value problems”, Journal of Mathematical Analysis and Applications, 327, 1167-1181.
[17] Geng, F., and Cui, M. (2012). “A reproducing kernel method for solving nonlocal fractional boundary value problems”, Applied Mathematics Letters, 25(5), 818–823.
[18] Geng, F. Z., and Li, X. M. (2012). “A new method for Riccati differential equations based on reproducing kernel and quasi-linearization methods”, Abstract and Applied Analysis, 2012, 1–8.
[19] Ghasemi, M., Fardi, M., and Khoshsiar Ghaziani, R. (2015). “Numerical solution of non-linear delay differential equations of fractional order in reproducing kernel Hilbert space”, Applied Mathematics and Computation, 268, 815–831.
[20] Gholami Baladezaei, M., Ghachpazan, M., and Hashemi Borzabadi, A., (2020). “Extraction of approximate solution for a class of nonlinear optimal control problems using 1/G′- expansion technique”, Control and Optimization in Applied Mathematics, 5(2), 56-82.
[21] Itik, M., Salamci, M. U., and Banks, S. P. (2009). “Optimal control of drug therapy in cancer treatment”, Nonlinear Analysis: Theory, Methods and Applications, 71(12), e1473– e1486.
[22] Jajarmi, A., Pariz, N., S. Effati, S., and Vahidian Kamyad A., (2011), “Solving infinite horizon nonlinear optimal control problems using an extended modal series method”, Journal of Zheijang University Science B., 12( 8), 667-677.
[23] Jiang, W., and Chen, Z. (2013). “A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation”, Numerical Methods for Partial Differential Equations, 30(1), 289–300.
[24] Kafash, B., Delavarkhalafi, A., and Karbassi, S. M., (2012). “Application of Chebyshev polynomials to derive eficient algorithms for the solution of optimal control problems”, Scientia Iranica, 19(3), 795-805.
[25] Kameswaran, S., and Biegler, L. T., (2008). “Convergence rates for direct transcription of optimal control problems using collocation at Radau points”, Computational Optimization and Applications, 41(1), 81–126.
[26] Mehne, H. H., and Borzabadi, A. H. (2006). A numerical method for solving optimal control problems using state parametrization. Numerical Algorithms, 42(2), 165–169.
[27] Mohammadi, M., and Mokhtari, R. (2011). “Solving the generalized regularized long wave equation on the basis of a reproducing kernel space”, Journal of Computational and Applied Mathematics, 235(14), 4003–4014.
[28] Momani, S., Abu Arqub, O., Hayat, T., and Al-Sulami, H. (2014). A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm Volterra type. Applied Mathematics and Computation, 240, 229–239.
[29] Nemati, A., Alizadeh, A. and F. Soltanian, F., (2020). “Solution of fractional optimal control problems with noise function using the Bernstein functions”, Control and Optimization in Applied Mathematics, 4(1), 37-51.
[30] Nezhadhosein, S., (2017). “Haar matrix equations for solving time-variant linear-quadratic optimal control problems”, Control and Optimization in Applied Mathematics, 2(2), 1-14.
[31] Pinch, E.R., (1993). “Optimal conntrol and calculus of variations”, Oxford University Press.
[32] Saberi Nik, H., and Effati, S. (2014). An approximate method for solving a class of non-linear optimal control problems, Optimal Control Applications and Methods, 35, 324-339.
[33] Saberi Nik, S. Effati, H., Mosta, S. S., and Shirazian, M., (2014). Spectral homotopy analysis method and its convergence for solving a class of nonlinear optimal control problems, Numerical Algorithm, 65, 171-194.
[34] Saberi Nik, H., Effati, S., and Yildirim, A. (2012). “Solution of linear optimal control systems by differential transform method”, Neural Computing and Applications, 23(5), 1311–1317.
[35] Salim, M. S. (1994). “Numerical studies for optimal control problems and its applications”, Ph.D Thesis, Assiut University, Assiut, Egypt.
[36] Shirazian, M., and Effati, S. (2012). Solving a class of nonlinear optimal control problems via he’s variational iteration method. International Journal of Control, Automation and Systems, 10(2), 249–256. https://doi.org/10.1007/s12555-012-0205-z
[37] Vahdati, S., Fardi, M., and Ghasemi, M. (2018). “Option pricing using a computational method based on reproducing kernel”, Journal of Computational and Applied Mathematics, 328, 252–266.
[38] Vlassenbroeck, J., van Dooren, R. (1988). “A Chebyshev technique for solving nonlinear optimal control problems”, IEEE Transactions on Automatic Control, 33(4), 333–340.
[39] Wang, Y., Du, M., Tan, F., Li, Z., and Nie, T. (2013). “Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions”, Applied Mathematics and Computation, 219(11), 5918–5925.
[40] Wei, S. M., Zefran, S. M., and DeCarlo, R. A. (2008). “Optimal control of robotic system with logical constraints: application to UAV path planning”, IEEE International Conference on Robotic and Automation, Pasadena, 176-181.
[41] Yousefi, S. A., Dehghan, M., and Lotfi, A., (2010). “Finding the optimal control of linear systems via He’s variational iteration method”, International Journal of Computer Mathematics, 87(5), 1042-1050.
[42] Zaremba, S. (1907). “L’équation biharmonique et une classe remarquable de fonctions fondamentales harmoniques”. Bulletin International de l’Academie des Sciences de Cracovie, 147-196. | ||
آمار تعداد مشاهده مقاله: 253 تعداد دریافت فایل اصل مقاله: 251 |